322 research outputs found

    Metamodeling of Droplet Activation for Global Climate Models

    Get PDF
    The nucleation of cloud droplets from the ambient aerosol is a critical physical process that must be resolved for global models to faithfully predict aerosol–cloud interactions and aerosol indirect effects on climate. To better represent droplet nucleation from a complex, multimodal, and multicomponent aerosol population within the context of a global model, a new metamodeling framework is applied to derive an efficient and accurate activation parameterization. The framework applies polynomial chaos expansion to a detailed parcel model in order to derive an emulator that maps thermodynamic and aerosol parameters to the supersaturation maximum achieved in an adiabatically ascending parcel and can be used to diagnose droplet number from a single lognormal aerosol mode. The emulator requires much less computational time to build, store, and evaluate than a high-dimensional lookup table. Compared to large sample sets from the detailed parcel model, the relative error in the predicted supersaturation maximum and activated droplet number computed with the best emulator is -0.6% ± 9.9% and 0.8% ± 17.8% (one standard deviation), respectively. On average, the emulators constructed here are as accurate and between 10 and 17 times faster than a leading physically based activation parameterization. Because the underlying parcel model being emulated resolves size-dependent droplet growth factors, the emulator captures kinetic limitations on activation. The results discussed in this work suggest that this metamodeling framework can be extended to accurately account for the detailed activation of a complex aerosol population in an arbitrary coupled global aerosol–climate model.National Science Foundation (U.S.) (grant 1122374)National Science Foundation (U.S.) (AGS-1339264)United States. Department of Energy. Office of Science (DE-FG02-94ER61937

    Protecting Older Workers: The Failure of the Age Discrimination in Employment Act of 1967

    Get PDF
    A growing number of older adults are finding that retirement is no longer affordable and they must work well into their later years. Unfortunately, over 42 years after passage of the Age Discrimination in Employment Act (ADEA) of 1967, age discrimination in the workplace continues to present serious impediments to employment in later life. Using a critical gerontology perspective, this paper reviews the history of work-related age discrimination and analyzes the ADEA and its limited effectiveness at protecting the civil and economic rights of older workers. The authors discuss implications and suggest policy alternatives that would support the employment and enhance the economic well-being of older adults

    Impacts on cloud radiative effects induced by coexisting aerosols converted from international shipping and maritime DMS emissions

    Get PDF
    International shipping emissions (ISE), particularly sulfur dioxide, can influence the global radiation budget by interacting with clouds and radiation after being oxidized into sulfate aerosols. A better understanding of the uncertainties in estimating the cloud radiative effects (CREs) of ISE is of great importance in climate science. Many international shipping tracks cover oceans with substantial natural dimethyl sulfide (DMS) emissions. The interplay between these two major aerosol sources on CREs over vast oceanic regions with a relatively low aerosol concentration is an intriguing yet poorly addressed issue confounding estimation of the CREs of ISE. Using an Earth system model including two aerosol modules with different aerosol mixing configurations, we derive a significant global net CRE of ISE (−0.153 W m−2 with a standard error of ±0.004 W m−2) when using emissions consistent with current ship emission regulations. This global net CRE would become much weaker and actually insignificant (−0.001 W m−2 standard error of ±0.007 W m−2) if a more stringent regulation were adopted. We then reveal that the ISE-induced CRE would achieve a significant enhancement when a lower DMS emission is prescribed in the simulations, owing to the sublinear relationship between aerosol concentration and cloud response. In addition, this study also demonstrates that the representation of certain aerosol processes, such as mixing states, can influence the magnitude and pattern of the ISE-induced CRE. These findings suggest a reevaluation of the ISE-induced CRE with consideration of DMS variability

    Volcano impacts on climate and biogeochemistry in a coupled carbon–climate model

    Get PDF
    Volcanic eruptions induce a dynamical response in the climate system characterized by short-term global reductions in both surface temperature and precipitation, as well as a response in biogeochemistry. The available observations of these responses to volcanic eruptions, such as to Pinatubo, provide a valuable method to compare against model simulations. Here, the Community Climate System Model Version 3 (CCSM3) reproduces the physical climate response to volcanic eruptions in a realistic way, as compared to direct observations from the 1991 eruption of Mount Pinatubo. The model's biogeochemical response to eruptions is smaller in magnitude than observed, but because of the lack of observations, it is not clear why or where the modeled carbon response is not strong enough. Comparison to other models suggests that this model response is much weaker over tropical land; however, the precipitation response in other models is not accurate, suggesting that other models could be getting the right response for the wrong reason. The underestimated carbon response in the model compared to observations could also be due to the ash and lava input of biogeochemically important species to the ocean, which are not included in the simulation. A statistically significant reduction in the simulated carbon dioxide growth rate is seen at the 90% level in the average of 12 large eruptions over the period 1870–2000, and the net uptake of carbon is primarily concentrated in the tropics, with large spatial variability. In addition, a method for computing the volcanic response in model output without using a control ensemble is tested against a traditional methodology using two separate ensembles of runs; the method is found to produce similar results in the global average. These results suggest that not only is simulating volcanoes a good test of coupled carbon–climate models, but also that this test can be performed without a control simulation in cases where it is not practical to run separate ensembles with and without volcanic eruptions.NASA Astrobiology Institute (NNGO6G127G)National Science Foundation (U.S.) (Grant 1049033)National Science Foundation (U.S.) (Grant 1021614

    Perspectives on software-defined networks: interviews with five leading scientists from the networking community

    Get PDF
    Software defined Networks (SDNs) have drawn much attention both from academia and industry over the last few years. Despite the fact that underlying ideas already exist through areas such as P2P applications and active networks (e.g. virtual topologies and dynamic changes of the network via software), only now has the technology evolved to a point where it is possible to scale the implementations, which justifies the high interest in SDNs nowadays. In this article, the JISA Editors invite five leading scientists from three continents (Raouf Boutaba, David Hutchison, Raj Jain, Ramachandran Ramjee, and Christian Esteve Rothenberg) to give their opinions about what is really new in SDNs. The interviews cover whether big telecom and data center companies need to consider using SDNs, if the new paradigm is changing the way computer networks are understood and taught, and what are the open issues on the topic

    Objective and quantitative definitions of modified food textures based on sensory and rheological methodology

    Get PDF
    Introduction: Patients who suffer from chewing and swallowing disorders, i.e. dysphagia, may have difficulties ingesting normal food and liquids. In these patients a texture modified diet may enable that the patient maintain adequate nutrition. However, there is no generally accepted definition of ‘texture’ that includes measurements describing different food textures. Objective: Objectively define and quantify categories of texture-modified food by conducting rheological measurements and sensory analyses. A further objective was to facilitate the communication and recommendations of appropriate food textures for patients with dysphagia. Design: About 15 food samples varying in texture qualities were characterized by descriptive sensory and rheological measurements. Results: Soups were perceived as homogenous; thickened soups were perceived as being easier to swallow, more melting and creamy compared with soups without thickener. Viscosity differed between the two types of soups. Texture descriptors for pâtés were characterized by high chewing resistance, firmness, and having larger particles compared with timbales and jellied products. Jellied products were perceived as wobbly, creamy, and easier to swallow. Concerning the rheological measurements, all solid products were more elastic than viscous (G′>G″), belonging to different G′ intervals: jellied products (low G′) and timbales together with pâtés (higher G′). Conclusion: By combining sensory and rheological measurements, a system of objective, quantitative, and well-defined food textures was developed that characterizes the different texture categories
    • …
    corecore