
Metamodeling of Droplet Activation for Global Climate Models

DANIEL ROTHENBERG AND CHIEN WANG

Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of

Technology, Cambridge, Massachusetts

(Manuscript received 4 August 2015, in final form 13 November 2015)

ABSTRACT

The nucleation of cloud droplets from the ambient aerosol is a critical physical process that must be re-

solved for global models to faithfully predict aerosol–cloud interactions and aerosol indirect effects on cli-

mate. To better represent droplet nucleation from a complex, multimodal, and multicomponent aerosol

population within the context of a global model, a new metamodeling framework is applied to derive an

efficient and accurate activation parameterization. The framework applies polynomial chaos expansion to a

detailed parcel model in order to derive an emulator that maps thermodynamic and aerosol parameters to the

supersaturation maximum achieved in an adiabatically ascending parcel and can be used to diagnose droplet

number from a single lognormal aerosol mode. The emulator requires much less computational time to

build, store, and evaluate than a high-dimensional lookup table. Compared to large sample sets from the

detailed parcel model, the relative error in the predicted supersaturation maximum and activated droplet

number computed with the best emulator is 20:6%6 9:9% and 0:8%6 17:8% (one standard deviation),

respectively. On average, the emulators constructed here are as accurate and between 10 and 17 times faster

than a leading physically based activation parameterization. Because the underlying parcel model being

emulated resolves size-dependent droplet growth factors, the emulator captures kinetic limitations on

activation. The results discussed in this work suggest that this metamodeling framework can be extended to

accurately account for the detailed activation of a complex aerosol population in an arbitrary coupled

global aerosol–climate model.

1. Introduction

Interactions between aerosol and clouds yield one of

the largest sources of uncertainty in understanding cli-

mate and future climate change on regional and global

scales (Boucher et al. 2013). Within Earth’s atmosphere,

homogeneous liquid water droplet formation is not

thermodynamically favorable (Pruppacher and Klett

1997); instead, the pathway to nucleating cloud droplets

is aided by the presence of ambient aerosol, a subset of

which possess physical and chemical characteristics that

allow them to serve as cloud condensation nuclei

(CCN). These CCN provide a linkage between the

physiochemical processes of atmospheric particles and

cloud microphysics.

Changes in the background aerosol population can

directly affect the properties of a nascent cloud droplet

population. For instance, holding liquid water content

constant, an increase in the number of CCN would tend

to increase the total cloud droplet number concentration

(the ‘‘Twomey’’ effect) while necessarily reducing the

average size of the droplets (Twomey 1974). Such a

change could enhance a cloud’s albedo, an effect that

could be further amplified through microphysical feed-

backs since smaller droplets impede the production of

drizzle and thus lengthen cloud lifetime (Albrecht 1989).

Mechanisms whereby aerosol influence the properties of

clouds (and ultimately climate) are generally known as

‘‘aerosol indirect effects’’ (Haywood and Boucher 2000;

Lohmann and Feichter 2005) and provide a path for

changes in the ambient aerosol to produce cascading

effects up to progressively larger scales of atmospheric

motion (e.g., Wang 2005; Ekman et al. 2011; Morrison

et al. 2011; Tao et al. 2011; Fan et al. 2012; Altaratz

et al. 2014).

Aerosol indirect effects can either warm or cool the

climate, but they all fundamentally depend on a subset of

the ambient aerosols that function as CCN. The theory

describing the dependency of cloud droplet nucleation
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(also known as aerosol activation) on CCN availability

and ambient aerosol has been rigorously developed us-

ing adiabatic and entraining parcel theory (Seinfeld and

Pandis 2006; Pruppacher and Klett 1997) and depends

on details of the heterogeneous chemical composition,

number, size distribution(s), and mixing state of the

background aerosol (Mcfiggans et al. 2006) as well as

local meteorology (Morales and Nenes 2010). Under

polluted conditions, effects relating to chemical com-

position could produce a climatic effect as large as the

basic Twomey effect (Nenes et al. 2002; Lance

et al. 2004).

The development of activation parameterizations was

pioneered by Twomey (1959) and Squires and Twomey

(1961), who derived a relationship between the number

of activated particles and the environmental supersatu-

ration based on an aerosol size distribution approxi-

mated by a power law. Ghan et al. (2011) presented a

thorough overview of subsequent developments over

the past five decades and an intercomparison of several

modern parameterizations. However, there is still an

active effort to improve these parameterizations, as they

are increasingly called upon to mediate between ever

more complex aerosol models and the climate models to

which they are coupled. For instance, the parameteri-

zation initially developed by Nenes and Seinfeld (2003)

has seen continuous development, including modifica-

tions to handle condensation onto insoluble but wetta-

ble particles using adsorption activation theory (Kumar

et al. 2009), environmental entrainment (Barahona and

Nenes 2007), and numerical improvement of the

population-splitting technique (Barahona et al. 2010;

Morales Betancourt and Nenes 2014). Similarly, Ghan

et al. (2011) extended the parameterization of Abdul-

Razzak and Ghan (2000) to account for nonunity values

of the accommodation coefficient ac. Beyond idealized

testing and droplet closure studies (Meskhidze 2005;

Fountoukis et al. 2007), thesemodern parameterizations

have been implemented in coupled climate–aerosol

models such as the Community Earth System Model

(CESM) to predict online cloud droplet number con-

centrations, where they have been shown to correct

biases in global-average cloud droplet number concen-

trations and improve agreement with cloud properties

measured from satelliteborne instruments (Gantt et al.

2014). Furthermore, adjoints of these parameterizations

have been derived and coupled to chemical transport

and global models in order to study the sensitivities of

cloud droplet number to aerosol, chemical, and micro-

physical factors (Karydis et al. 2012; Moore et al. 2013).

Additionally, following the original integral/geometric

approach by Twomey (1959), analytical representations

of supersaturation evolution from adiabatic parcel theory

have been progressively generalized to relate aerosol

distributions to activation kinetics (Cohard et al. 1998;

Khvorostyanov and Curry 2006, 2008; Shipway and Abel

2010; Shipway 2015). Although fundamentally analytical

parameterizations, schemes of this class typically must

rely on expensive numerical operations, such as in the

evaluation of hypergeometric functions and iterative

loops.

While most of these recent efforts toward improving

activation parameterizations have focused on building

highly generalized, ‘‘physically based’’ tools, there is still

an application for other parameterization approaches.

Saleeby and Cotton (2004) parameterized droplet nu-

cleation for a cloud-resolving model, the Regional At-

mospheric Modeling System (RAMS), by constructing a

four-dimensional lookup table based on temperature,

vertical velocity, aerosol number concentration, and the

median radius of a lognormal aerosol mode with as-

sumed chemical composition.Ward et al. (2010) added a

fifth dimension representing chemical composition via

aerosol hygroscopicity [following k–Köhler theory

(Petters and Kreidenweis 2007)] to the lookup table and

later generalized this dimension to aerosol soluble

fraction (Saleeby and van den Heever 2013). Con-

structing lookup tables of detailed parcel model results

can be considered a form of model emulation

combining a cache of known results and local poly-

nomial (linear) approximation.

As the degrees of freedom and number of parameters

describing a given aerosol population in a model in-

crease, the burden of saving enough known points to

interpolate through the parameter space via lookup ta-

ble to some reasonable accuracy increases algebraically.

For instance, the CESM features a modal aerosol pop-

ulation with three predefined, internally mixed lognor-

mal modes, each with a fixed geometric standard

deviation (Liu et al. 2012). Each mode is uniquely de-

scribed by two moments (total number and total mass

concentration) and the chemical composition of the

mode by a single prognostic hygroscopicity term. Thus,

the entire aerosol population has N5 9 degrees of

freedom—toomany to build a lookup table of activation

statistics. Physically based parameterizations were de-

signed to accommodate these sorts of arbitrary mixtures

of aerosol but have a tendency to systematically un-

derestimate activated fractions and subsequently cloud

droplet number (Simpson et al. 2014). This is because of

the parameterizations’ use of a set of assumptions that

become increasingly likely to be violated as the aerosol

population becomes more complex, specifically 1) that

protodroplets grow in equilibrium with environmental

changes in relative humidity and 2) that there are no

kinetic or inertial limitations to droplet growth. The
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presence of giant CCN (Barahona et al. 2010) and weak

updrafts or excessively polluted conditions (Nenes et al.

2001) exacerbates this problem.

The goal of this study is to apply a surrogate modeling or

emulation technique commonly used in the uncertainty

quantification literature to a detailed parcel model capable

of describing aerosol activation; this yields an efficient pa-

rameterization optimized for the high-dimensional param-

eter space affecting droplet nucleation in coupled aerosol–

climate model. In essence, employing the derived emulator

as an activation parameterization would be akin to directly

coupling a detailed parcel model to a global model. Such a

parameterization would be directly physically based but

rely on fewer assumptions that affect the condensational

growth of aerosol into CCN. However, it would also in-

corporate the efficiency of a lookup table, since the emu-

lator would be designed to require a scarce amount of

cached information and to be computationally cheap to

evaluate. In this way, the emulatorwould improve upon the

framework of a lookup table and be extensible to a very

high-dimensional parameter space and thus be compatible

with aerosol–climate models of increasing complexity.

Additionally, this study aims to better understand

which parameters and inputs into droplet nucleation

calculations are key to determining the resulting acti-

vated number concentration. Morales Betancourt and

Nenes (2014) supplemented traditional error metrics by

computing local sensitivities of the number concentration

activated to key aerosol size distribution parameters

using a detailed parcel model and comparing them to the

adjoint of their parameterization. This study applies a

related approach instead using global sensitivity analysis,

which is suitable for identifying how uncertainty in inputs

and parameters contributes to uncertainty in a model

response. This analysis has not previously been applied to

droplet activation and can provide additional metrics for

evaluating parameterizations and their potential biases.

Section 2 describes the parcel model and the probabi-

listic collocation method (PCM) used to build its emu-

lator. Section 3 presents results fromapplying the PCM to

build a parcel model emulator designed to simulate the

activation of a single lognormal aerosol mode under a

wide variety of background environments and compares

the new emulator to existing activation parameteriza-

tions. Section 4 motivates an extension of the technique

to an emulator suitable of mediating aerosol activation

in a coupled aerosol–climate model.

2. Methodology

a. Parcel model

Adiabatic parcel models are commonly used to study

droplet activation and its sensitivity to factors such as

environmental conditions and ambient aerosol properties.

For this work, a novel parcel model based on previous

studies (Leaitch et al. 1986; Nenes et al. 2001; Seinfeld and

Pandis 2006) was designed and implemented to accom-

modate diverse, chemically heterogeneous, and poly-

disperse aerosol populations. Themodel simulates droplet

growth on the initial aerosol population due to conden-

sation within a constant-speed adiabatic updraft.

Although an arbitrary aerosol size distribution

function can be supplied as an input to the model, for

the purposes of this study the initial aerosol distribu-

tion is assumed to be lognormal and described by the

equation

n
N
(r)5

dN

d lnr
5

N
tffiffiffiffiffiffi

2p
p

lns
g

exp

2
42 ln2(r/m

g
)

2 ln2s
g

3
5 , (1)

where the parameter set (Nt, mg, sg) corresponds, re-

spectively, to the total aerosol number concentration, the

geometric mean radius, and the geometric standard de-

viation of the distribution. Within the model, this distri-

bution is discretized into 200 size bins equally spaced over

the logarithm of particle radius r and covers the size range

(min[0:1 nm, mg/10sg], mg 3 10sg). The mean radius in

each bin grows as a result of condensation so that the ac-

tivation of wetted aerosol into droplets is calculated in a

Lagrangian sense. To relate size-dependent droplet growth

to its embedded aerosol’s chemical composition, each bin is

prescribed a hygroscopicity following k–Köhler theory

(Petters and Kreidenweis 2007).

To simulate droplet activation, the parcel model first

computes an equilibrium wet-size distribution from the

given initial aerosol population and initial environmental

temperature, pressure, and relative humidity. Then, a set

of conservation equations that describe the evolution of

the parcel temperature, supersaturation, liquid/vapor wa-

ter content, and pressure are integrated forward in time

using a solver suitable for stiff systems [variable-coefficient

ordinary differential equation solver (VODE); Brown

et al. (1989)]. The complete system of equations and

further details on the parcel model can be found in

appendix A.

b. Polynomial chaos expansion

We construct an emulator of the parcel model in order

to assess droplet activation by applying the probabilistic

collocation method (PCM; Tatang et al. 1997). The

PCM maps a set of input parameters to an output from

the parcel model by building a response surface using a

polynomial chaos expansion. The polynomial that re-

sults from this process is a computationally efficient,

high-fidelity reproduction of the detailed parcel model
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simulation. Although often used for conducting global

sensitivity analyses (Pan et al. 1997; Calbó et al. 1998;

Mayer et al. 2000; Lucas and Prinn 2005; Anttila and

Kerminen 2007) chaos expansion-based emulators have

also been used to build deterministic parameterizations

(Cohen and Prinn 2011). To apply and build the chaos

expansions discussed here, the open-source Design

Analysis Kit for Optimization and Terascale Applica-

tions (DAKOTA; Adams et al. 2014), version 6.1, was

used, which automates the sampling of the PCM collo-

cation points and the computation of the coefficients of

the polynomial chaos expansion given a user-generated

interface to a numerical model (the parcel model de-

scribed in section 2a) and a description of the inputs and

outputs to and from that interface.

A review of the theoretical basis of polynomial chaos

expansion and its potential applications is provided by

Sudret (2008); here, we highlight the important details of

the technique as applied via PCM for the benefit of the

reader. PCM is a nonintrusive polynomial chaos expan-

sion technique; rather than require complex, significant

modifications to the model being emulated, PCM instead

considers the model to be a black box and constructs a

map from an input parameter space to the model output

parameter space. To accomplish this, PCM recasts the

input parameters to a model as a set of M independent

random variables, X5X1, . . . , XM, each with an associ-

ated probability density function. For each input inX, the

associated PDF is used as a weighting function to derive

an orthogonal polynomial that adds to the bases for the

polynomial chaos expansion fj. Using a finite number of

these bases, the chaos expansion for a given model re-

sponse R is then

R’ �
P

j50

a
j
f
j
(X) . (2)

The complete basis of polynomials up to a fixed total-

order p is retained in the expansions computed here. For

such a total-order expansion, Eq. (2) has Nt 5P1 15
(M1 p)!/(M!p!) terms as it contains each of the p1 1

orthogonal basis polynomials for each input parameter.

PCM provides an experimental design for determining

the coefficients of the expansion aj by evaluating the

model response for a set ofNs total input parameter sets,

X1, . . . , XNs , corresponding to the roots of fj and solv-

ing a regression problem

Fa5R , (3)

whereR is the vector of model responses, a is the vector

of expansion coefficients, and the matrix F contains

rows for each of the polynomial terms fj evaluated for a

given input parameter set Xj.

A practical consideration in applying the PCM to a

particular problem is what subset of the Ns potential

points to use in solving for the coefficients. In general,

there exists a full factorial design of size Ns 5 (p1 1)M

available for use (all the roots of the orthogonal basis

polynomials for all inputs). However, for even moder-

ately sized p and M, the number of potential model

evaluations grows very rapidly. In our application we

choose a subset of N0
s parameter sets when applying the

PCM by using two rules of thumb:

1) choose parameter sets with roots closest to the origin

(Sudret 2008) and

2) cross validate the regression result using 3Nt param-

eter sets chosen according to rule 1.

These rules will always produce an overdetermined

system for Eq. (3). The accuracy of the resulting emula-

tors derived in this study were not sensitive to increasing

N0
s, and 3Nt does not produce an excessive number of

required parcel model simulations. Three different tech-

niques were tested for solving this system: typical linear

regression by ordinary least squares (OLS), least angle

regression (LARS; Efron et al. 2004), and least absolute

shrinkage and selection operator (LASSO; Tibshirani

2011). Both LARS and LASSO involve computing

a5 argminkFa2Rk2l2 such that kak
l1
# t (4)

in an iterative, greedy fashion with the potential to yield

sparse solutions with some coefficients aj 5 0. This

would be desirable for high-order chaos expansions for

many input parameters, as it would reduce the number

of coefficients necessary to save for reusing the expan-

sion as an emulator. Additionally, this greedy charac-

teristic helps to avoid overfitting the chaos expansions.

Each time a potential term is added to the trial expan-

sion, an error estimate is calculated based on leave-one-

out sampling (Blatman and Sudret 2011); if the error

estimate increases, the potential term is rejected. In-

specting the resulting terms gives a metric to compare

the OLS-derived chaos expansion. The same error cal-

culation using leave-one-out sampling can be applied

using the larger, independent sampling dataset used to

evaluate the chaos expansions in section 2a for each

higher-order chaos expansion to help identify when

overfitting is occurring.

c. Emulation of parcel model

The PCM was applied to emulate the activation of a

single, lognormal aerosol mode embedded in a constant-

speed adiabatic updraft as simulated by the parcel

model described in section 2a. Specifically, the model

was used to predict the maximum supersaturation Smax
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given aerosol of different lognormal size distributions

and hygroscopicities for different environmental and

thermodynamic conditions. The mechanics of the PCM—

and polynomial chaos expansion more generally—permit

the use of arbitrary PDFs to describe the input parameters

over their physically relevant values. In this application,

uniform distributions were chosen to emphasize that the

derived chaos expansion should perform equally well

anywherewithin the input parameter space. Eachuniform

distribution is defined by minimum and maximum per-

missible bounds for each input parameter, a and b, such

that its probability distribution is just given as f (x)5
1/(b2 a) for a, x, b.

To utilize the PCM, the uniform distribution for each

parameter must be rescaled to the range [21, 1]. This

produces a new set of random variables for each pa-

rameter Xi:

Z
i
5
2(X

i
2 a

i
)

b
i
2 a

i

2 1: (5)

The orthogonal polynomials used in the basis of the

chaos expansion that correspond to a uniform PDF over

the interval [21, 1] are the canonical Legendre poly-

nomials that follow the three-term recurrence relation:

P
0
(Z)5 1, (6)

P
1
(Z)5Z, and (7)

P
n11

(Z)5
(2n1 1)ZP

n
(Z)2 nP

n21
(Z)

n1 1
. (8)

The roots of these Legendre polynomials can be

inverted using Eq. (5) to determine values in the origi-

nal, physical parameter space to use in sampling the

parcel model.

The bounds for the physical parameters supplied to

the PCM were chosen in order to characterize activa-

tion near cloud base (Table 1). The logarithm of several

variables (aerosol number concentration, aerosol geo-

metric mean radius, and updraft velocity) is used because

the supersaturation maximum computed by the parcel

model is sensitive to changes in these parameters over

several orders of magnitude. Updraft velocity is per-

mitted to vary between 0.01 and 10.0m s21; over this

range (which covers a spectrum fromweakly convecting,

stratiform clouds to strong, deeply convecting ones) and

the range of aerosol number concentration (which in-

cludes clean and very polluted regimes), activated

fraction can range from virtually nothing to complete

activation of the entire aerosol population. The lower

bound of updraft speeds considered here is less than the

minimal value allowed in many climate models (Golaz

et al. 2011). The aerosol mode geometric mean radii mg

span a variety of smaller Aitken-type modes to large,

coarse aerosol modes and potentially giant CCN

(Seinfeld and Pandis 2006). The mode geometric stan-

dard deviation is fixed in some global model aerosol

schemes (e.g., Kim et al. 2008; Liu et al. 2012) and the

range chosen here covers many potential values. Hy-

groscopicity values are based on Table 1 of Petters and

Kreidenweis (2007) and span values for materials

ranging from organic aerosol to highly hygroscopic salts.

The accommodation coefficient was limited to a globally

representative range based on observations of CCN

activation kinetics from many campaigns (Raatikainen

et al. 2013). Temperature and pressure ranges were

chosen to reflect typical lower-troposphere values. Note

that the bounds on the parameters considered here are

expanded from those considered byGhan et al. (2011) in

their intercomparison of activation schemes.

Many parameterizations of droplet nucleation di-

agnose activation directly by applying equilibrium

Köhler theory. To do this, themaximum supersaturation

achieved by a cloudy parcel is used as a threshold; par-

ticles with a Köhler-predicted critical supersaturation

lower than this maximum environmental supersatura-

tion are considered to be activated. However, physically,

for a droplet to activate it must grow beyond a critical

size corresponding to this critical supersaturation. Be-

cause of kinetic limitations on droplet growth, this may

TABLE 1. Input parameters and bounds used in computing chaos expansion for emulating droplet activation from a single, lognormal

aerosol mode embedded in a constant-speed updraft.

Symbol Name Units Bounds

log10N Mode number concentration log10 cm
23 [1, 4]

log10mg Mode geometric mean radius log10 mm [23.0, 1.0]

sg Mode standard deviation — [1.2, 3.0]

k Mode hygroscopicity — [0.0, 1.2]

log10V Updraft velocity log10ms21 [22.0, 1.0]

T Air temperature K [240, 310]

P Air pressure Pa [50 000, 105 000]

ac Accommodation coefficient — [0.1, 1.0]
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not be realized for droplets growing on very large CCN

(Nenes et al. 2001). Ghan et al. (2011) suggests particles

with radius larger than 0.1mm or those whose critical su-

persaturations are close to the environmental maximum

supersaturation are likely to suffer from this effect. By

directly considering a detailed parcelmodel, the emulators

constructed here consider kinetic limitations on droplet

growth and their feedback on the evolving parcel super-

saturation. In existing, physically based parameterizations

in the literature, an instantaneous growth-rate assumption

must be applied. This assumption causes parameteriza-

tions to underpredict supersaturation maximum because

instantaneous growthwill tend to condensewater from the

vapor phase too quickly and release surplus latent heat,

which suppresses the increase of the supersaturation.

Because the computed supersaturation maximum in a

parcel model activation simulation can also vary over

several orders of magnitude, we use log10(Smax) as the

response function emulated by the PCM. However, in

order to apply this transform to the response function, it

must be assumed that the cloudy parcel always super-

saturates with respect to water vapor (i.e., Smax . 0). To

ensure this, all simulations performed during sampling

by the PCM start with an aerosol population equilibrated

to 100% relative humidity and an initial environmental

supersaturation of 0. Many existing parameterizations in

the literature implicitly make this same assumption by

representing the aerosol population with respect to a

coordinate derived from the critical supersaturation for a

given size [Ghan et al. (2011); Eqs. (12)–(17)]; in this case

the integral over the size distribution spans 0# S#Smax

and, thus, considers the same situation with respect to the

growth of the nascent droplet population as Eq. (3) of

Ghan et al. (2011).

For the eight-parameter input space governing single-

mode activation considered here, the third- and fourth-

order chaos expansions produced by the PCM have 165

and 495 terms, respectively. The number of terms is

equivalent to the number of coefficients one must store

in order to reuse a given chaos expansion. This small

memory footprint affords chaos expansions a huge ad-

vantage over similar parameterizations based on de-

tailed lookup tables. An isotropic lookup table with M

parameters and n sample points for each parameter

would require nM values to be stored—a value that for

even small numbers of parameters can be several orders

of magnitude larger than even a high-order chaos ex-

pansion. A more detailed description of how the chaos

expansions are saved and later evaluated is given in

appendix B.

The parcel model emulator yields log10(Smax) as a

function of an input parameter set drawing from the

terms defined in Table 1:

log
10
(S

max
)5 f (log

10
N, log

10
m
g
,s

g
, k, log

10
V,T,P, a

c
) .

(9)

From this value of log10(Smax) the number concen-

tration of cloud droplets activated,Nact, can be obtained

by integrating over the original lognormal aerosol size

distribution reexpressed as a function of critical super-

saturation rather than droplet radius (Ghan et al. 2011),

yielding the expression

N
act

5
N

2

�
12 erf

�
2 ln

�
S
m

S
max

��
(3

ffiffiffi
2

p
lns

g
)

�	
, (10)

where Sm is the critical supersaturation for the geo-

metric mean radius mg.

d. Global sensitivity analysis

We supplement the assessment of our new droplet

activation emulator by calculating a set of global sensi-

tivity metrics not previously applied to this problem.

The method deployed here is a variance-based de-

composition, which seeks to assign uncertainty in a

model response to uncertainty in both individual model

input parameters and their interactions with one an-

other. Two different quantities, called Sobol’ indices

(Sobol’ 2001), are produced by this method: main (Si)

and total (Ti) effect indices. Sobol’ indices can be used to

rank the relative importance of model inputs in influ-

encing its response and for identifying potential inputs

that are unimportant and also candidates to be held fixed

without grossly biasing the accuracy of a model emula-

tor (Sobol’ 2001).

The main effect index indicates what fraction of the

uncertainty in a given model response R is attributable

to a single member of the model parameter set Xi by

comparing the variance of the model response condi-

tioned on Xi against the total variance in R. That is,

S
i
5

Var
Xi
(E[R jX

i
])

Var(R)
. (11)

This is in contrast with the total effect index, which

instead compares the variance of R conditioned on all

the input parameters save for Xi (notated as X;i). The

index Ti quantifies the variance of R attributable to Xi

and the sum of its interaction with other input terms.

Similar to the main effect index,

T
i
5

Var(R)2Var(E[R jX
;i
])

Var(R)
. (12)

Sudret (2008) derives alternative equations that fur-

ther clarify the meanings of these terms in the context of

studying model emulators. Critically, these terms can be
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expressed as multidimensional integrals over model

input parameters that can be approximated via Monte

Carlo or other sampling techniques, although it is very

computationally expensive to do so. We adopt the

column swap-out sampling method of Weirs et al.

(2012), which combines Latin hypercube sampling

with perturbed combinations of parameters to effi-

ciently approximate Si and Ti [see also Saltelli et al.

(2010)]. However, the sampling procedure employed

still requires a large number of model evaluations; for

an initial n-size sample of the M parameters being

studied, the method requires (21M)3 n evaluations

of the full-complexity model. We found that the

computed Si and Ti converged to stable values for the

parcel model (and other parameterizations studied

here) for n;O(103) and used n5 1280 to derive the

values reported here.

Although the sampling procedure can be repeated for

the emulators derived via polynomial chaos expansion,

the orthogonality of the basis terms that constitute each

expansion lends itself to a more direct computation of Si

and Ti. Following Sudret (2008), we compute these in-

dices directly from the coefficients of the derived chaos

expansions. The sampling technique used to derive

Sobol’ indices for the parcel model, applied to the chaos

expansions, produces similar estimates to those com-

puted from the coefficients.

3. Results

a. Evaluation of emulators

Toassess theperformanceof the emulator, two sets ofn5
10000 samples were drawn using maximum Latin hyper-

cube sampling from the parameter space defined in Table 1.

This randomized design ensured that representative, equal

numbers of samples were drawn from across the multidi-

mensional parameter space. In the first set, variables whose

logarithms were used to build the emulator were sampled in

logarithmic space; in the second set, these variables were

transformed back to their original values (e.g., from log10N

to N) before the sample was constructed. The two in-

dependent sets were blended together to assess the emula-

tor. This helps ensure that both very high and very low

values of the log transformed are thoroughly represented

within the sample. The set of sample parameter sets were

run through all the derived chaos expansions of all orders, as

well as the detailed parcel model as a reference benchmark

for activation dynamics.

Figure 1 illustrates the performance of a fourth-order

expansion whose coefficients were derived using ordi-

nary least squares. The large range of initial tempera-

tures, pressures, aerosol populations, and updraft speeds

sampled here leads to a very large range of supersatu-

ration maxima achieved by the ascending parcel.

Weaker updraft speeds are generally associated with

lower maximum supersaturations and corresponding to

lower aerosol activated fraction; the opposite is true

when strong updrafts are present, although there are

some cases where a strong updraft activates a small

fraction of aerosol. This typically occurs when initial

aerosol size distribution is shifted toward larger radii

and under polluted conditions with aerosol number

concentrations greater than 3000 cm23. However, over

the large parameter space sampled, the chaos expansion

accurately reproduces the parcel model’s determination

of Smax and corresponding activated fraction. This is

even true for predictions of small Smax, which could

potentially have a larger bias since the predicted error is

expected to be uniform in log10(Smax).

FIG. 1. One–one plot comparing (a) predicted supersaturation maximum and (b) diagnosed equilibrium droplet

activated fraction between parcel model and a polynomial chaos expansion of order p5 4, with coefficients

computed using ordinary least squares. Black lines denote a factor-of-2 difference between predicted values using

parcel model and those computed with the parameterization. Glyph shading denotes updraft velocity V with

corresponding scale in (a).
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For parameter sets leading to a large activated frac-

tion of 0.8–1.0, the relative error of the chaos expansion

(compared to the parcel model) rarely exceeds 5% and

on average (for all activated fractions) is 5.7%. While

the mean relative error in each activated fraction decile

is close to 0, the standard deviation in the relative error

tends to increase for the lower ones; the standard de-

viation in relative error decreases from 19.7% for acti-

vated fractions in the range 0.1–0.2 to 3.5% for those in

the range 0.8–0.9. This suggests that there is a nonlinear

component in the mapping from the input parameter

space to the emulated maximum supersaturation and

diagnosed droplet number concentration that is preva-

lent in the weak droplet activation regime; the predicted

activated fraction is more sensitive to small changes in

the input parameters in this regime than in others.

Increasing the order of the chaos expansion tends to

improve the accuracy of the predicted Smax, as recorded

in Table 2. However, there is not much difference be-

tween the methods used to compute the coefficients of

the expansion beyond expansion order. For example, for

the fourth- and fifth-order expansions, the expansions

perform equally well regardless of what method (OLS,

LARS, or LASSO) was used to compute the coefficients

when considering the mean and spread of the relative

error to the parcel model reference simulations. In all

cases, the chaos expansions produce very large r2 values

and small normalized fractional root-mean-square

errors [RMSE/�n

i51(X
2
i /n)], which decrease as the or-

der of the expansion increases.

These same statistics, computed for the diagnosed

droplet number concentration given the predicted su-

persaturation maximum, are summarized in Table 3.

Here, the trend is similar to before; increasing the order

of the expansion tends to improve the accuracy of the

diagnosed number concentration in terms ofmean relative

error and also tends to decrease spread around that value.

Third-order expansions tend to produce more accurate

results with respect to the mean relative error, but this is

overshadowed by the fact that there is farmore variance in

their predicted values as indicated by the standard de-

viation of their relative errors, which are almost twice as

large as those of the higher-order expansions.

b. Comparison with other parameterizations

We compare the performance of the chaos expansion-

based emulators to two existing parameterizations from

the literature. The scheme by Abdul-Razzak and Ghan

(2000) (ARG)—which is widely used in global models—

utilizes a psuedoanalytical solution to an integro-

differential equation derived from the adiabatic parcel

systemwith embedded aerosol growing via condensation.

This is in contrast to the scheme by Morales Betancourt

and Nenes (2014) (MBN), which is based on an iterative

scheme to separate the aerosol population into subsets

whose growth is inertially limited or not and uses this

information to derive a maximum supersaturation for a

given parcel system. The MBN scheme is generally more

expensive to evaluate than the ARG scheme because of

its iterative nature but is often more accurate owing to its

consideration of the potentially important effect of large

albeit unactivated aerosol particles (Simpson et al. 2014).

In contrast with these schemes, our emulators simulate

the activation process based on the explicit numerical

solution obtained from a detailed parcel model, which is

similar to the one used to build and evaluate the MBN

scheme (e.g., Nenes and Seinfeld 2003).

The parameter sets used in section 3a were also used

to compute droplet activation with the ARG and

MBN parameterizations. The relative errors between

TABLE 2. Summary statistics for supersaturation maxima predicted by chaos expansions derived in this study compared to detailed

parcel model calculations. The chaos expansions are organized by the method used to derive their coefficients and the expansion order in

the two leftmost columns. (left to right) The reported statistics are the normalized root-mean-square error (NRMSE), coefficient of

determination r2, mean relative error (MRE), and standard deviation of the mean relative error (MRE std dev).

Method Expansion order NRMSE r2 MRE MRE std dev

LASSO 2 0.292 766 0.877 600 24.963 330 31.098 459

3 0.193 247 0.946 670 21.012 509 19.797 674

4 0.112 323 0.981 983 3.941 698 13.396 632

5 0.119 231 0.979 699 0.772 525 9.904 727

LARS 2 0.325 442 0.848 752 3.055 232 39.776 865

3 0.250 264 0.910 559 25.433 902 17.853 369

4 0.104 401 0.984 435 20.517 486 13.092 187

5 0.135 634 0.973 729 20.572 383 9.962 430

OLS 2 0.266 774 0.898 368 7.956 622 40.762 613

3 0.220 034 0.930 861 21.232 172 20.441 521

4 0.201 934 0.941 768 4.243 836 14.483 854

5 0.128 687 0.976 351 20.259 165 10.430 909
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the supersaturation maximum and droplet number

predicted by these schemes and the chaos expansions

compared to the parcel model are illustrated in Fig. 2.

Both the ARG and MBN parameterizations are more

accurate than the second- and third-order chaos ex-

pansions. The ARG scheme tends to underpredict the

maximum supersaturation, which is consistent with

previous investigations into its performance (Abdul-

Razzak and Ghan 2000; Ghan et al. 2011; Simpson

et al. 2014). This tends to produce a bias toward

underprediction of droplet number. TheMBN scheme

tends to yieldmore accurate predictions of bothmaximum

supersaturation and droplet number. However, both

schemes are outperformed by the fourth- and fifth-order

chaos expansions, both on average and in terms of the

variance of the predictions; for instance, the OLS-derived

fourth- and fifth-order expansions yield relative error in

predicted Smax with a mean plus or minus one standard de-

viation of 4:2%6 14:4% and 20:32%6 10:4%, whereas

the ARG and MBN schemes yield 213:7%6 18:2% and

TABLE 3. As in Table 2, but for predicted droplet number concentration.

Method Expansion order NRMSE r2 MRE MRE std dev

LASSO 2 0.165 043 0.929 439 5.697 161 49.813 356

3 0.108 790 0.969 342 20.930 886 20.270 639

4 0.074 406 0.985 659 2.545 998 19.834 428

5 0.058 872 0.991 022 1.441 665 14.497 129

LARS 2 0.167 168 0.927 611 3.524 631 39.031 227

3 0.121 896 0.961 510 20.030 537 34.613 813

4 0.075 984 0.985 044 20.280 769 16.430 850

5 0.058 961 0.990 995 0.884 227 17.817 749

OLS 2 0.174 550 0.921 076 7.640 377 43.978 774

3 0.125 045 0.959 496 0.380 943 28.562 715

4 0.079 971 0.983 434 2.556 756 20.929 598

5 0.061 762 0.990 119 1.295 857 17.903 202

FIG. 2. Box plots illustrating mean relative error between (a) supersaturation max and

(b) droplet number concentration predicted by chaos expansions and parameterizations vs

detailed parcel model. The chaos expansions have been grouped by expansion order (x axis)

and method for computing their coefficients (OLS, LARS, and LASSO; hue). ‘‘ARG’’ refers

to the scheme of Abdul-Razzak and Ghan (2000); ‘‘MBN’’ refers to the scheme of Morales

Betancourt and Nenes (2014).
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22:4%6 15:8%, respectively. This is larger than other

studies have reported, but we explore a much larger

parameter space in our sampling for the purposes of

deriving the chaos expansion.

As a consequence of tending to slightly underpredict

Smax, both theARGandMBN schemes underpredict the

number of activated droplets in the framework consid-

ered here. The mean relative error in droplet number

predicted by the ARG and MBN schemes for the sam-

ples here are 29:6%6 23:4% and 24:9%6 16:8%, re-

spectively. All of the chaos expansions outperform the

mean relative error of the ARG scheme, and those of

order p$ 3 do so with less variance.

In addition to producing low mean relative error in

predicted Smax and droplet number activated, the chaos

expansions also reproduce the dependence of activation

dynamics on aerosol physical properties and updraft

speed, as illustrated in Fig. 3. In response to increasing

aerosol number concentration, Smax reached by an as-

cending parcel tends to decrease because there is a

larger surface area available where condensation can

occur, producing a larger source of latent heat release

that limits the production of supersaturation. Overall,

though, the droplet number concentration increases

despite this effect as the aerosol activated fraction only

decreases by a factor of 4 when the total number of

initial aerosol increases by an order of magnitude

(Figs. 3a,b). Shifting the aerosol population to larger

sizes (Figs. 3c,d) produces a similar effect in inhibiting

the increase in a parcel’s supersaturation; however,

Köhler theory predicts that these larger particles will

more easily activate, which offsets the increase in Smax

and yields larger droplet number concentrations. A

similar effect occurs as aerosol hygroscopicity increases

(Figs. 3e,f).

The chaos expansions, as well as both the ARG and

MBN schemes, capture these subtleties of activation

dynamics as well as the detailed parcel model. More

importantly, the expansions reproduce the sensitivity of

activation to updraft speed (Figs. 3g,h), which is an im-

portant factor controlling Smax and setting the droplet

number. At the largest updraft speeds of a few meters

per second—indicative of deep, vigorous convection—

the MBN scheme outperforms both the chaos expan-

sions and the ARG scheme. However, for the aerosol

population considered in Fig. 3g,h (with N5 1000 cm23,

m5 0:05mm, and s5 2:0), the relative error in predicted

Smax by the chaos expansions at high updraft speeds

does not substantially affect the diagnosed droplet

number concentration, since in this case all but

the smallest aerosol particles activate under equilibrium

considerations. Note that this Smax overprediction cou-

pled with an accurate assessment of activated fraction

occurs formany different single-mode, lognormal aerosol

populations.

Although all the chaos expansion results in Fig. 3

appear biased high compared to the parcel model, this

bias does not hold true in general. Note that the ARG

scheme is biased low in this particular analysis; this is

generally just an artifact of fixing seven of the eight

parameters and analyzing one-dimensional transects.

Fixing the nonvarying parameters at different values

tends to shift the bias positive or negative in a non-

systematic way. Critically, the choice of values for these

parameters does not affect the chaos expansion’s ability

to reproduce the sensitivity to the varying parameter,

which lends confidence that the expansions accurately

reproduce the behavior of the parcel model.

Since Fig. 3 highlights the fact that different schemes

potentially perform better in different parts of the pa-

rameter space governing droplet activation, we stratified

the sampling results based on level of pollution and

updraft-speed strength and computed activated fraction

relative error statistics in each of these bins as shown in

Fig. 4. All of the schemes are accurate in clean and

lightly polluted conditions (with aerosol number con-

centration N, 1000 cm23). However, there is a ten-

dency for both the ARG and MBN schemes to

underpredict droplet number in heavily polluted con-

ditions (N. 2500 cm23).

The fourth-order OLS-derived chaos expansion is

plotted in Fig. 4a as a representative example of the

chaos expansions, and it retains its accuracy across the

pollution level–updraft strength spectrum. The combi-

nation of light updrafts and heavy pollution tends to

produce the largest underprediction in activated droplet

number, ranging from 10% to 30% for the ARG and

MBN schemes. Unsurprisingly, relative error in acti-

vated fraction tends to be least sensitive to increasing

aerosol number concentration in the strong updraft re-

gime. In this case, the vigorous updraft produces strong

adiabatic cooling that overwhelms latent heat release

from condensation as the droplets in the parcel grow,

contributing to a rapid and large Smax [Eq. (A1)] and

thereby activating a significant fraction of the aerosol.

It should be noted that parts of the parameter space we

considered in applying the PCM, evaluating its output,

and comparing to existing parameterizations may not be

typical of real atmospheric cases. We chose a large pa-

rameter space in order to derive the most general emu-

lator possible for this particular single-mode aerosol case.

In the real world, there should be some correlation be-

tween the ambient temperatures, pressures, and updraft

speeds usedwhen diagnosing aerosol activation, while we

sample these factors as if they were independent from

one another. The output from applying the parcel model
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to nonrealistic activation scenarios could tend to inflate

the computed relative errors and exacerbate differences

between the parcel model and the existing, physically

based parameterizations.

c. Global sensitivity analysis

Total Sobol’ indicesTi for each of the input parameters

summarized in Table 1 corresponding to the prediction of

FIG. 3. Sensitivity of (a)–(d) parameterized and simulated maximum supersaturation and (e)–(h) activated number fraction to changes

inmode number concentration, mode geometricmean radius,mode hygroscopicity, and updraft speedwith all other parameters held fixed

at the values T5 283K, P5 850 hPa, V 5 0.5m s21, ac 5 1:0, m 5 0.05mm, k5 0:54, N5 1000 cm23, and s5 2:0. ‘‘MBN’’ and ‘‘ARG’’

correspond to the schemes of Morales Betancourt and Nenes (2014) and the update by Ghan et al. (2011) to Abdul-Razzak and Ghan

(2000), respectively; the curves correspond to fourth-order chaos expansions with coefficients derived using the named method.
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Smax are plotted for each of the chaos expansions, pa-

rameterizations, and parcel model in Fig. 5. The order of

the chaos expansion does not impact the relative impor-

tance of each term between different schemes or for

higher-order expansions of the same scheme. Both up-

draft speed and the aerosol distribution size parameter

most strongly contribute to the variance in Smax, followed

by the total number of aerosols. This is in contrast with

the chemical parameters in the model, ac and k, which

provide the weakest constraints, suggesting the impor-

tance of the total aerosol surface area in dominating the

potential for droplet activation by controlling Smax.

Indices derived using the chaos expansions very

closely approximate those derived by sampling the full

parcel model. This is expected since they simply provide

an alternative framework for calculating the indices

from the parcel model. However, the differences be-

tween the ARG and MBN schemes and the parcel

model highlight the potential for biases in these schemes

due to oversensitivity to particular model parameters.

For instance, the ARG scheme is less sensitive to vari-

ations in sg than the full parcel model; however, the

dependence of Smax in that scheme on sg is tuned to their

own numerical calculations, which may differ from ours

(Abdul-Razzak et al. 1998). Furthermore, the ARG

scheme is more sensitive to variations in ac than our

parcel model and emulators, which parameterize the

dependence of the condensational growth coefficient

by a simple rescaling against a reference value computed

for ac 5 1 rather than explicitly account for it.

Maximum supersaturations produced by the MBN

scheme are more sensitive to the geometric mean size of

the aerosol than those from the parcel model or ARG

scheme and generally less sensitive to the strength of the

updraft speed. The relative importance of each term for

both the ARG and MBN scheme generally agrees with

the estimates from the parcel model and chaos expan-

sions, although the ARG scheme is most sensitive to

FIG. 4. Mean relative error in activated fraction for (a) fourth-order OLS-derived chaos expansion, (b) ARG, and (c) MBN schemes

relative to detailed parcel model. Updraft speeds are light (10–50 cm s21), moderate (0.5–2.0m s21), and strong (2.0–10.0m s21); pollution

levels are clean (10–250 cm23), light (250–1000 cm23), moderate (1000–2500 cm23), and heavy (2500–10 000 cm23). Error bars denote

95% confidence interval on mean relative error from in-bin samples; samples with m, 10 nm were omitted from these calculations.

FIG. 5. Total Sobol’ indices corresponding to the prediction of Smax for each parameter in

Table 1 for each chaos expansion (OLS, LARS, and LASSO), parameterization (ARG and

MBN), and parcel model. For the chaos expansions, the lighter colors indicate successively

higher-order expansions.
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updraft speed rather than geometric mean aerosol size.

By means of those parameters’ higher Ti, the aerosol

size distribution parameters exert far more influence

over Smax robustly for both parameterizations and the

parcel model.

The chaos expansions help rank the relative importance

of each input parameter with the potential for important

interactions between terms. The leading eight terms ranked

by main Sobol’ index computed using the OLS-derived

chaos expansions are summarized in Table 4. For all four

(second- through fifth-order) chaos expansions summa-

rized, all the terms with rank greater than eight were an

order of magnitude less important than those in the table.

With the exception of the second-order scheme, the rank-

ings of the top eight terms do not change relative order, and

the main terms dominate the higher-order ones. The only

higher-order terms that contribute grossly to the variance in

Smax are combinations of the updraft speed and aerosol size

distribution parameters, reiterating their importance com-

pared to the chemistry terms (onlyk appears in the topeight).

d. Computational efficiency of chaos expansions

As detailed in appendix B, evaluating the emulator

produced by the chaos expansion requires two sets of

straightforward floating-point operations. The first set

requires the projection of the input parameters into the

vector space spanned by the basis polynomials of the chaos

expansion, which can then be used to evaluate the basis

polynomials up to the required order. The remaining op-

erations simply multiply these intermediate evaluations

together and sum them to evaluate the full expansion. In

general, this procedure should lie in between the ARG and

MBN schemes in terms of computational complexity. The

ARG scheme relies on straightforward floating-point op-

erations to derive an estimate for Smax, which at worst in-

volves evaluating a logarithm. However, the MBN scheme

requires sets of iterations, eachofwhichnecessitates a costly

evaluation of the error function and the complementary

error function.

On average, the second- and fifth-order OLS-derived

chaos expansion was 10–17 times faster than the MBN

scheme given the same single-mode aerosol population.

The exact speedup depended on the background ve-

locity; for weak updraft speeds, the performance of the

MBN scheme fared better, although it became much

worse for updrafts whereV, 2m s21. TheARG scheme

was consistently 1–3 times faster than those same chaos

expansions. Since the pathway for evaluating either the

ARG or chaos expansion schemes do not change de-

pending on the input parameters, their performance was

the same regardless of what inputs were provided.

4. Summary and conclusions

An efficient parameterization of droplet activation

for a single aerosol model under a wide variety of dif-

ferent physico-chemical properties and thermodynamic

conditions was developed via statistical emulation of a

detailed parcel model using polynomial chaos expan-

sion. The emulators predict the maximum supersatura-

tion achieved by a parcel, which is then used to diagnose

activated droplet number using Köhler theory in a

similar framework to existing activation parameteriza-

tions. The fourth- and fifth-order chaos expansions de-

rived from the detailed parcel model are more accurate

on average than two commonly used, physically based

parameterizations from the literature (Abdul-Razzak

and Ghan 2000; Morales Betancourt and Nenes 2014).

Additionally, the chaos expansions are all at least 10

times faster to evaluate than the MBN scheme and only

about twice as expensive as the ARG scheme. A simple

algorithm was suggested for evaluating a chaos expan-

sion that requires a minimal amount of data about the

expansion (such as the basis polynomials and the co-

efficients of the expansion terms) to be saved; in this

way, the chaos expansions offer a method for extending

lookup tables to very high dimensionalities without

suffering from exponentially rising storage costs.

TABLE 4. Input parameters and combinations ranked by main Sobol’ index for the OLS-based chaos expansions.

Order

2 3 4 5

Rank Term Main Si Term Main Si Term Main Si Term Main Si

1 log10mg 0.379 log10mg 0.358 log10mg 0.360 log10mg 0.359

2 log10V 0.331 log10V 0.311 log10V 0.315 log10V 0.312

3 log10N 0.122 log10N 0.129 log10N 0.127 log10N 0.129

4 sg 0.049 sg 0.058 sg 0.055 sg 0.056

5 T 0.042 T 0.052 T 0.045 T 0.047

6 log10V log10mg 0.016 log10N log10mg 0.022 log10N log10mg 0.021 log10N log10mg 0.021

7 log10N log10mg 0.016 k 0.017 k 0.019 k 0.019

8 k 0.015 log10V log10mg 0.017 log10V log10mg 0.018 log10V log10mg 0.017
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Based on the large set of aerosol properties and ther-

modynamic conditions we sampled in order to derive and

evaluate the chaos expansions, we observed that our

emulators particularly outperform the existing schemes in

conditions where a light updraft and heavy aerosol pollu-

tion (with respect to number concentration) are present.

Because the ultimate goal of an activation parameterization

is to couple the aerosol physics and chemistry to the cloud

microphysics of a global-scale model, this deficiency in the

existing parameterizations could be particularly important.

Few global models have aerosol–cloud microphysics con-

nections in their deep convection parameterizations, but

many source potential cloud droplet formation based on a

detailed aerosol activation calculation for their shallow

convection and stratiform cloud microphysics schemes.

These schemes sometimes artificially restrict the lowest

possible updraft speed available for estimating droplet ac-

tivation, but as a consequence they ensure that weak up-

drafts make up a large portion of the activation conditions

considered during a model run. In regions of the world

with heavy anthropogenic aerosol pollution—such as south-

ern and eastern Asia—this provides a recipe for systemati-

cally underpredicting droplet number and potentially

impacting either a globalmodel’s simulated aerosol indirect

effect on climate or themodeled aerosol–cloud interaction’s

sensitivity to changes in anthropogenic aerosol emissions.

The global sensitivity analysis framed on the input pa-

rameter set used to derive the new chaos expansion em-

ulators provides an additional, new check on the

performance of existing activation schemes compared to

the detailed parcel model. The breakdown of main Sobol’

indices calculated using the chaos expansions provides

insight into the importance of interactions between the

dominant first-order terms (updraft speed, number con-

centration, and geometric mean size of the aerosol dis-

tribution), which are further summarized by the total

Sobol’ indices derived for the parcel model and both

ARGandMBN schemes. The oversensitivity of theMBN

scheme to the geometric mean radius and the under-

sensitivity of the ARG scheme to the updraft speed con-

tribute to their disagreement with the parcel model across

the range of pollution levels and updraft speeds studied

here. Further, such sensitivity analyses could shed addi-

tional light on the potential biases of activation schemes

and could provide useful metrics for evaluating the im-

provement of parameterizations more generally than

simple ones based on relative or absolute error alone.

Critically, the framework from which the chaos ex-

pansions reported here are derived is extensible to the

case where a complex, multispecies/multimodal aerosol

population is tracked by a global model; in that case, the

number of parameters describing the aerosol size distribu-

tion and chemical composition simply increases. Future

workwill derive chaos expansions emulating activation for a

multimodal aerosol distribution specific to a particular

global aerosol–climate model. Additionally, physical pro-

cesses not considered here can also be introduced into the

chaos expansion framework. For instance, entrainment can

be incorporated into the parcel model following Seinfeld

and Pandis (2006) and Barahona and Nenes (2007).

Subgrid-scale variability in updraft speeds due to the coarse

resolutionof globalmodel grids and thedistributionof these

updrafts can be represented either by a characteristic value

(Morales and Nenes 2010) or by numerical integration

over a distribution (Lohmann et al. 1999; Golaz et al. 2011).

In the latter case, many activation calculations must be

performed, incurring a large computational cost. However,

the entire integration over a spectrum of droplet speeds

could be parameterized in the chaos expansion framework,

greatly reducing the cost of this calculation and potentially

improving the accuracy of diagnosed cloud droplet number.

As the complexity of global aerosol–climate models in-

creases with respect to the number of aerosol modes and

species tracked by the model, there is a pressing need to

understand how biases in activation calculations across the

high-dimensional parameter spaces defining the aerosol–

climatemodel affect cloud properties and ultimately impact

modeled climate. This work highlights a novel way to build

efficient, accurate activation schemes for this purpose akin

to customized lookup tables, which cannot themselves ex-

tend to cover the necessary parameters. Employing such

schemes should help improve simulated cloud microphysi-

cal properties and constrain modeled aerosol indirect ef-

fects on climate.
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APPENDIX A

Parcel Model Description

The adiabatic cloud parcel model implemented for

this study follows the basic equations of Pruppacher and

Klett (1997) and adopts the framework used by Nenes

et al. (2001) to account for kinetic limitations on droplet

growth. Fundamentally, the model integrates a system
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of coupled ordinary differential equations that describe

the thermodynamic evolution of an adiabatically lifted,

nonentraining parcel. In all the simulations described

here, we use the variable-coefficient ordinary differen-

tial equation solver (VODE; Brown et al. 1989) to in-

tegrate the system forward in time.

The model tracks the evolution of supersaturation S

with respect to water as

dS

dt
5a(T,P)V2 g(T,P)

dw
c

dt
, (A1)

where a(T, P) 5 (gMwL /cpRT
2) 2 (gMa /RT) and

g(T, P)5 (PMa/esMw)1 (MwL
2/cpRT

2) are functions

that are weakly dependent on temperature and pressure

(Leaitch et al. 1986), Mw and Ma are the molecular

weights of water and air, L is the latent heat of evapo-

ration of water, cp is the specific heat of dry air at con-

stant pressure, R is the universal gas constant, g is the

acceleration due to gravity, es is the saturation vapor

pressure, and wc is the liquid cloud water mass mixing

ratio. Equation (A1) expresses the supersaturation as a

balance between production due to adiabatic cooling

and loss due to latent heat release. This same framework

describes the parcel’s change in temperature over time,

dT

dt
52

gV

c
p

2
L

c
p

dw
y

dt
, (A2)

where V is the updraft velocity and wy is water vapor

mass mixing ratio. Water mass is conserved as vapor

condenses into cloud water,

dw
y

dt
1
dw

c

dt
5 0: (A3)

Equations (A1)–(A3) are linked through the growth

of the cloud droplet population from the initial aerosol.

Given n bin sizes, each associated with a number con-

centration N and a radius r, the change in cloud water

can be written as

dw
c

dt
5

4pr
w

r
a

�
n

i51

N
i
r2i
dr

i

dt
, (A4)

where rw and ra denote the density of water and air,

respectively.

The diffusional growth rate for droplets in the ith bin

is calculated by

dr
i

dt
5
G

r
i

(S2S
eq
) , (A5)

where S is the environmental supersaturation, Seq is the

Köhler-predicted equilibrium supersaturation of the

droplet, andG is a growth coefficient which is a function

of both the physical and chemical properties of the

particle receiving condensate,

G5

�
r
w
RT

e
s
D0

yMw

1
Lr

w
[(LM

w
/RT)2 1]

k0
aT

	21

. (A6)

Noncontinuum effects on the diffusivity D0
y and

thermal conductivity k0
a factors are accounted for with

the corrections

D0
y 5D

y

, 
11

D
y

a
c
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pM

w

RT

r !
(A7)

and

k0
a 5 k

a

, 
11

k
a

a
T
rr

a
c
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pM

a

RT

r !
. (A8)

In these correction terms, the thermal accommodation

coefficient aT is assumed to be 0.96; the condensation co-

efficient aC is allowed to vary as observations suggest it

could take values between 0.1 and 1.0 (Raatikainen et al.

2013). The instantaneous droplet growth rate is further

modulated by the difference between the environmental

supersaturation S and the saturation ratio over the surface

of the aqueous droplet Seq.We treat the droplet-dependent

Seq following Petters and Kreidenweis (2007), who

employ a single-term k to parameterize particle hygro-

scopicity; values of k can be derived from laboratory ex-

periments. Under the framework of k–Köhler theory the

curvature effect term remains the same, while the solute

effect term is rewritten such that

S
eq
5

r3 2 r3d
r3 2 r3d(12 k)

exp

�
2M

w
s
w

RTr
w
r

�
, (A9)

where r and rd are the droplet radius and the dry radius

of its embedded aerosol particle (which is tracked for

each initial aerosol size in the model) and sw is the

droplet surface tension, which we take to be indepen-

dent of the droplet solution composition and described

following the recommendation of Pruppacher and

Klett (1997), sw 5 0:07612 1:553 1024(T2 273). A lim-

itation of the this approach for computing Seq is that it is

not convenient to derive analytical expressions for the

critical supersaturation and radius; theymust be computed

numerically by finding the value rcrit such that

›S
eq

›r






rcrit

5 0 (A10)

and then computing Scrit 5 Seq(rcrit) for a given k and

rd. This is accomplished using Brent’s method (Brent

1973) and by bounding rcrit from below with the obser-

vation that rcrit . rd.
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Finally, the parcel thermodynamic description is

closed by predicting the pressure change within the as-

cending parcel following the hydrostatic relationship,

which can be written using the ideal gas law as

dP

dt
52

gPV

R
d
T
y

, (A11)

whereTy is the virtual temperature, which is employed to

account for changes in air density due to loss of water

vapor to condensate. Equations (A1)–(A4), (A11), and

(A5) applied to each n droplet size bins form a closed

system which conserves total water mass.

APPENDIX B

Chaos Expansion Emulator Evaluation

The PCM as applied here produces two outputs: a

P-length vector of coefficients a comprising real values

and a P3Mmatrix of orthogonal polynomial ordersF

comprising integers. Each term in matrix F contains a

multi-index component for each term in the chaos ex-

pansion and indicates the order of the orthogonal

polynomial corresponding to term 1# j#M for ex-

pansion term 0# i#P. For any expansion, max(F)5 p,

the desired order of the chaos expansion. Algorithm 1

describes the evaluation of a chaos expansion.

Algorithm 1: Psuedocode for evaluating a
polynomial chaos expansion of the form given
in Eq. (2), applied to the computation of Smax

1: for all Xj do

2: Zj )project Xj

3: end for

4: Ŝ) 0

5: for row i5 0; i#P do

6: Ŝi ) 1

7: for column j5 0; j#M do

8: k)F(i, j)

9: Pj,k )fk
j [Z(j)]

10: Ŝi 5 Ŝi 3Pj,k

11: end for

12: Ŝ5 Ŝ1a(i)3 Ŝi

13: end for

14: Smax ) 10Ŝ

Evaluating the chaos expansion involves two parts.

First, the input parameters must be projected to conform

to the space supported by the PDFs associated with each

basis polynomial type, producing a set of parameters Zj.

In general, a set of mixed orthogonal polynomials could

be used to derive a chaos expansion, but here only

Legendre polynomials were used, and each parameter

can be projected using Eq. (5). Second, the polynomial

can be evaluated by treating F as a lookup table for the

orders of each basis orthogonal polynomial. In practice,

the evaluation of these orthogonal polynomials at Zj for

orders up to k can be efficiently precomputed (before the

polynomial evaluation loop) by existing orthogonal

polynomial libraries (Gautschi 1994).

In general, the only computationally complex part of

the chaos expansion evaluation algorithm is the projection

from Xj to Zj; given certain basis orthogonal polynomials

and their associated PDFs, this procedure could involve

numerical integration or otherwise complicated function

evaluations. In the case of simple uniform PDFs, though,

the process is achieved entirely by rescaling the parame-

ters, with little computational overhead. Furthermore,

although evaluating a chaos expansion requires looping

over each of its terms, each term can be computed in-

dependently from one another and efficiently optimized.

This is in contrast with an iterative scheme that could in-

volve numerical integration or other costly operations and

must be performed in sequence.
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