104 research outputs found

    Strongly reshaped organic-metal interfaces: Tetracyanoethylene on Cu(100)

    Full text link
    The interaction of the strong electron-acceptor tetracyanoethylene (TCNE) with the Cu(100) surface has been studied with scanning tunneling microscopy experiments and first-principles density functional theory calculations. We compare two different adsorption models with the experimental results and show that the molecular self-assembly is caused by a strong structural modification of the Cu(100) surface rather than the formation of a coordination network by diffusing Cu adatoms. Surface atoms become highly buckled and the chemisorption of TCNE is accompanied by a partial charge-transfer.Comment: 4 pages, 3 figures, to appear in Physical Review Letter

    A direct interaction between two Restless Legs Syndrome predisposing genes : MEIS1 and SKOR1

    Get PDF
    Restless Legs syndrome (RLS) is a common sleep disorder for which the genetic contribution remains poorly explained. In 2007, the frst large scale genome wide association study (GWAS) identifed three genomic regions associated with RLS. MEIS1, BTBD9 and MAP2K5/SKOR1 are the only known genes located within these loci and their association with RLS was subsequently confrmed in a number of follow up GWAS. Following this fnding, our group reported the MEIS1 risk haplotype to be associated with its decreased expression at the mRNA and protein levels. Here we report the efect of the risk variants of the three other genes strongly associated with RLS. While these variants had no efect on the mRNA levels of the genes harboring them, we fnd that the homeobox transcription factor MEIS1 positively regulates the expression of the transcription co-repressor SKOR1. This regulation appears mediated through the binding of MEIS1 at two specifc sites located in the SKOR1 promoter region and is modifed by an RLS associated SNP in the promoter region of the gene. Our fndings directly link MEIS1 and SKOR1, two signifcantly associated genes with RLS and also prioritize SKOR1 over MAP2K5 in the RLS associated intergenic region of MAP2K5/SKOR1 found by GWAS

    Development of Direction Selectivity in Mouse Cortical Neurons

    Get PDF
    SummaryPrevious studies of the ferret visual cortex indicate that the development of direction selectivity requires visual experience. Here, we used two-photon calcium imaging to study the development of direction selectivity in layer 2/3 neurons of the mouse visual cortex in vivo. Surprisingly, just after eye opening nearly all orientation-selective neurons were also direction selective. During later development, the number of neurons responding to drifting gratings increased in parallel with the fraction of neurons that were orientation, but not direction, selective. Our experiments demonstrate that direction selectivity develops normally in dark-reared mice, indicating that the early development of direction selectivity is independent of visual experience. Furthermore, remarkable functional similarities exist between the development of direction selectivity in cortical neurons and the previously reported development of direction selectivity in the mouse retina. Together, these findings provide strong evidence that the development of orientation and direction selectivity in the mouse brain is distinctly different from that in ferrets

    Loss of neuronal potassium/chloride cotransporter 3 (KCC3) is responsible for the degenerative phenotype in a conditional mouse model of hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum

    Get PDF
    Disruption of the potassium/chloride cotransporter 3 (KCC3), encoded by the SLC12A6 gene, causes hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC), a neurodevelopmental and neurodegenerative disorder affecting both the peripheral nervous system and CNS. However, the precise role of KCC3 in the maintenance of ion homeostasis in the nervous system and the pathogenic mechanisms leading to HMSN/ACC remain unclear. We established two Slc12a6 Cre/LoxP transgenic mouse lines expressing C-terminal truncated KCC3 in either a neuron-specific or ubiquitous fashion. Our results suggest that neuronal KCC3 expression is crucial for axon volume control. We also demonstrate that the neuropathic features of HMSN/ACC are predominantly due to a neuronal KCC3 deficit, while the auditory impairment is due to loss of non-neuronal KCC3 expression. Furthermore, we demonstrate that KCC3 plays an essential role in inflammatory pain pathways. Finally, we observed hypoplasia of the corpus callosum in both mouse mutants and a marked decrease in axonal tracts serving the auditory cortex in only the general deletion mutant. Together, these results establish KCC3 as an important player in both central and peripheral nervous system maintenance

    Evaluation of lung recovery after static administration of three different perfluorocarbons in pigs.

    Get PDF
    International audienceBackground: The respiratory properties of perfluorocarbons (PFC) have been widely studied for liquid ventilation inhumans and animals. Several PFC were tested but their tolerance may depend on the species. Here, the effects of asingle administration of liquid PFC into pig lungs were assessed and compared. Three different PFC having distinctevaporative and spreading coefficient properties were evaluated (Perfluorooctyl bromide [PFOB], perfluorodecalin[PFD] and perfluoro-N-octane [PFOC]).Methods: Pigs were anesthetized and submitted to mechanical ventilation. They randomly received an intra-trachealadministration of 15 ml/kg of either PFOB, PFD or PFOC with 12 h of mechanical ventilation before awakening andweaning from ventilation. A Control group was submitted to mechanical ventilation with no PFC administration. Allanimals were followed during 4 days after the initial PFC administration to investigate gas exchanges and clinicalrecovery. They were ultimately euthanized for histological analyses and assessment of PFC residual concentrationswithin the lungs using dual nuclei fluorine and hydrogen Magnetic Resonance Imaging (MRI). Sixteen animals wereincluded (4/group).Results: In the PFD group, animals tended to be hypoxemic after awakening. In PFOB and PFOC groups, blood gaseswere not significantly different from the Control group after awakening. The poor tolerance of PFD was likely related toa large amount of residual PFC, as observed using MRI in all lung samples (≈10% of lung volume). This percentage waslower in the PFOB group (≈1%) but remained significantly greater than in the Control group. In the PFOC group, thepercentage of residual PFC was not significantly different from that of the Control group (≈0.1%). Histologically, themost striking feature was an alveolar infiltration with foam macrophages, especially in the groups treated by PFD orPFOB.Conclusions: Of the three tested perfluorocarbons, PFOC offered the best tolerance in terms of lung function, gasexchanges and residuum in the lung. PFOC was rapidly cleared from the lungs and virtually disappeared after 4 dayswhereas PFOB persisted at significant levels and led to foam macrophage infiltration. PFOC could be relevant for shortterm total liquid ventilation with a rapid weaning

    Adaptive Movement Compensation for In Vivo Imaging of Fast Cellular Dynamics within a Moving Tissue

    Get PDF
    In vivo non-linear optical microscopy has been essential to advance our knowledge of how intact biological systems work. It has been particularly enabling to decipher fast spatiotemporal cellular dynamics in neural networks. The power of the technique stems from its optical sectioning capability that in turn also limits its application to essentially immobile tissue. Only tissue not affected by movement or in which movement can be physically constrained can be imaged fast enough to conduct functional studies at high temporal resolution. Here, we show dynamic two-photon Ca2+ imaging in the spinal cord of a living rat at millisecond time scale, free of motion artifacts using an optical stabilization system. We describe a fast, non-contact adaptive movement compensation approach, applicable to rough and weakly reflective surfaces, allowing real-time functional imaging from intrinsically moving tissue in live animals. The strategy involves enslaving the position of the microscope objective to that of the tissue surface in real-time through optical monitoring and a closed feedback loop. The performance of the system allows for efficient image locking even in conditions of random or irregular movements

    N-Terminal Prolactin-Derived Fragments, Vasoinhibins, Are Proapoptoptic and Antiproliferative in the Anterior Pituitary

    Get PDF
    The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this vasoinhibin may be involved in the control of anterior pituitary cell renewal

    Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest : Why inventory is a vital science

    Get PDF
    Study of all flies (Diptera) collected for one year from a four-hectare (150 x 266 meter) patch of cloud forest at 1,600 meters above sea level at Zurqui de Moravia, San Jose Province, Costa Rica (hereafter referred to as Zurqui), revealed an astounding 4,332 species. This amounts to more than half the number of named species of flies for all of Central America. Specimens were collected with two Malaise traps running continuously and with a wide array of supplementary collecting methods for three days of each month. All morphospecies from all 73 families recorded were fully curated by technicians before submission to an international team of 59 taxonomic experts for identification. Overall, a Malaise trap on the forest edge captured 1,988 species or 51% of all collected dipteran taxa (other than of Phoridae, subsampled only from this and one other Malaise trap). A Malaise trap in the forest sampled 906 species. Of other sampling methods, the combination of four other Malaise traps and an intercept trap, aerial/hand collecting, 10 emergence traps, and four CDC light traps added the greatest number of species to our inventory. This complement of sampling methods was an effective combination for retrieving substantial numbers of species of Diptera. Comparison of select sampling methods (considering 3,487 species of non-phorid Diptera) provided further details regarding how many species were sampled by various methods. Comparison of species numbers from each of two permanent Malaise traps from Zurqui with those of single Malaise traps at each of Tapanti and Las Alturas, 40 and 180 km distant from Zurqui respectively, suggested significant species turnover. Comparison of the greater number of species collected in all traps from Zurqui did not markedly change the degree of similarity between the three sites, although the actual number of species shared did increase. Comparisons of the total number of named and unnamed species of Diptera from four hectares at Zurqui is equivalent to 51% of all flies named from Central America, greater than all the named fly fauna of Colombia, equivalent to 14% of named Neotropical species and equal to about 2.7% of all named Diptera worldwide. Clearly the number of species of Diptera in tropical regions has been severely underestimated and the actual number may surpass the number of species of Coleoptera. Various published extrapolations from limited data to estimate total numbers of species of larger taxonomic categories (e.g., Hexapoda, Arthropoda, Eukaryota, etc.) are highly questionable, and certainly will remain uncertain until we have more exhaustive surveys of all and diverse taxa (like Diptera) from multiple tropical sites. Morphological characterization of species in inventories provides identifications placed in the context of taxonomy, phylogeny, form, and ecology. DNA barcoding species is a valuable tool to estimate species numbers but used alone fails to provide a broader context for the species identified.Peer reviewe
    corecore