4 research outputs found

    Human secretory immunoglobulin A may contribute to biofilm formation in the gut

    No full text
    It is critical, both for the host and for the long-term benefit of the bacteria that colonize the gut, that bacterial overgrowth with subsequent bacterial translocation, which may lead to sepsis and death of the host, be avoided. Secretory IgA (sIgA) is known to be a key factor in this process, agglutinating bacteria and preventing their translocation in a process termed ‘immune exclusion’. To determine whether human sIgA might facilitate the growth of normal enteric bacteria under some conditions, the growth of human enteric bacteria on cultured, fixed human epithelial cells was evaluated in the presence of sIgA or various other proteins. Human sIgA was found to facilitate biofilm formation by normal human gut flora and by Escherichia coli on cultured human epithelial cell surfaces under conditions in which non-adherent bacteria were repeatedly washed away. In addition, the presence of sIgA resulted in a 64% increase in adherence of E. coli to live cultured epithelial cells over a 45-min period. Mucin, another defence factor thought to play a key role in immune exclusion, was found to facilitate biofilm formation by E. coli. Our findings suggest that sIgA may contribute to biofilm formation in the gut

    Cross-talk between probiotic bacteria and the host immune system

    No full text
    Among the numerous purported health benefits attributed to probiotic bacteria, their capacity to interact with the immune system of the host is now supported by an increasing number of in vitro and in vivo experiments. In addition to these, a few well-controlled human intervention trials aimed at preventing chronic immune dysregulation have been reported. Even though the precise molecular mechanisms governing the cross-talk between these beneficial bacteria and the intestinal ecosystem remain to be discovered, a new and fascinating phase of research has been initiated in this area as demonstrated by a series of recent articles. This article summarizes the status and latest progress of the field in selected areas and aims at identifying key questions that remain to be addressed, especially concerning the translocation of ingested bacteria, the identification of major immunomodulatory compounds of probiotics, and specific aspects of the host-microbe cross-talk. The interaction with immunocompetent cells and the role of secretory IgA in gut homeostasis are also evoked. Finally, a brief overview is provided on the potential use of recombinant DNA technology to enhance the health benefits of probiotic strains and to unravel specific mechanisms of the host-microbe interactio
    corecore