34 research outputs found

    Barriers, facilitators and motivators of electronic community health information system use among health workers in Ethiopia

    Get PDF
    BackgroundThe electronic community health information system (eCHIS) has been implemented in Ethiopia to support health services delivered by community health workers. Despite the many benefits of digitizing community health information systems, the implementation of the eCHIS is challenged by many barriers resulting in low uptake. This study assessed the barriers, facilitators, and motivators of eCHIS use among health workers with focus on health extension workers (HEWs) in Ethiopia.MethodsPhenomenological approach was used to assess the barriers, facilitators and motivators of eCHIS use in Amhara, Harari, Oromia, Sidama, South West Ethiopia and Southern Nation Nationalities and People's regions of Ethiopia. Data were collected from 15–29 May 2022. A total of 54 face-to-face in-depth interviews were conducted among HEWs, HEW supervisors, health information technicians and managers. The interviews were audiotaped using Open Data Kit, transcribed verbatim and translated into English. OpenCode 4.03 software was used for coding and categorizing the data. Thematic analysis was used to analyze the data.ResultsThe HEWs and other eCHIS users reported lack of infrastructure and resources; poor quality of training, follow-up, and supervision; parallel recording using the manual and electronic system; and HEWs' workload as barriers hindering eCHIS use. Data quality, retrievability, and traceability; tablet portability; encouragement from supervisors; and positive image in the community resulting from HEWs using tablets in their routine activities were the main facilitators of eCHIS use.ConclusionThe study identified various barriers that adversely affect the use of eCHIS. An integrated and coordinated approach to eCHIS implementation that encompasses removing the barriers, and reinforcing facilitators is required

    Economic evaluation of shortened, bedaquiline-containing treatment regimens for rifampicin-resistant tuberculosis (STREAM stage 2): a within-trial analysis of a randomised controlled trial

    Get PDF
    BACKGROUND: The STREAM stage 2 trial assessed two bedaquiline-containing regimens for rifampicin-resistant tuberculosis: a 9-month all-oral regimen and a 6-month regimen containing an injectable drug for the first 2 months. We did a within-trial economic evaluation of these regimens. METHODS: STREAM stage 2 was an international, phase 3, non-inferiority randomised trial in which participants with rifampicin-resistant tuberculosis were randomly assigned (1:2:2:2) to the 2011 WHO regimen (terminated early), a 9-month injectable-containing regimen (control regimen), a 9-month all-oral regimen with bedaquiline (oral regimen), or a 6-month regimen with bedaquiline and an injectable for the first 2 months (6-month regimen). We prospectively collected direct and indirect costs and health-related quality of life data from trial participants until week 76 of follow-up. Cost-effectiveness of the oral and 6-month regimens versus control was estimated in four countries (oral regimen) and two countries (6-month regimen), using health-related quality of life for cost-utility analysis and trial efficacy for cost-effectiveness analysis. This trial is registered with ISRCTN, ISRCTN18148631. FINDINGS: 300 participants were included in the economic analyses (Ethiopia, 61; India, 142; Moldova, 51; Uganda, 46). In the cost-utility analysis, the oral regimen was not cost-effective in Ethiopia, India, Moldova, and Uganda from either a provider or societal perspective. In Moldova, the oral regimen was dominant from a societal perspective. In the cost-effectiveness analysis, the oral regimen was likely to be cost-effective from a provider perspective at willingness-to-pay thresholds per additional favourable outcome of more than US4500inEthiopia,4500 in Ethiopia, 1900 in India, 3950inMoldova,and3950 in Moldova, and 7900 in Uganda, and from a societal perspective at thresholds of more than 15900inEthiopia,15 900 in Ethiopia, 3150 in India, and 4350inUganda,whileinMoldovatheoralregimenwasdominant.InEthiopiaandIndia,the6monthregimenwouldcosttuberculosisprogrammesandparticipantslessthanthecontrolregimenandwashighlylikelytobecosteffectiveinbothcostutilityanalysisandcosteffectivenessanalysis.Reducingthebedaquilinepricefrom4350 in Uganda, while in Moldova the oral regimen was dominant. In Ethiopia and India, the 6-month regimen would cost tuberculosis programmes and participants less than the control regimen and was highly likely to be cost-effective in both cost-utility analysis and cost-effectiveness analysis. Reducing the bedaquiline price from 1·81 to $1·00 per tablet made the oral regimen cost-effective in the provider-perspective cost-utility analysis in India and Moldova and dominate over the control regimen in the provider-perspective cost-effectiveness analysis in India. INTERPRETATION: At current costs, the oral bedaquiline-containing regimen for rifampicin-resistant tuberculosis is unlikely to be cost-effective in many low-income and middle-income countries. The 6-month regimen represents a cost-effective alternative if injectable use for 2 months is acceptable. FUNDING: USAID and Janssen Research & Development

    Evaluation of two short standardised regimens for the treatment of rifampicin-resistant tuberculosis (STREAM stage 2): an open-label, multicentre, randomised, non-inferiority trial.

    Get PDF
    The STREAM stage 1 trial showed that a 9-month regimen for the treatment of rifampicin-resistant tuberculosis was non-inferior to the 20-month 2011 WHO-recommended regimen. In STREAM stage 2, we aimed to compare two bedaquiline-containing regimens with the 9-month STREAM stage 1 regimen. We did a randomised, phase 3, non-inferiority trial in 13 hospital clinics in seven countries, in individuals aged 15 years or older with rifampicin-resistant tuberculosis without fluoroquinolone or aminoglycoside resistance. Participants were randomly assigned 1:2:2:2 to the 2011 WHO regimen (terminated early), a 9-month control regimen, a 9-month oral regimen with bedaquiline (primary comparison), or a 6-month regimen with bedaquiline and 8 weeks of second-line injectable. Randomisations were stratified by site, HIV status, and CD4 count. Participants and clinicians were aware of treatment-group assignments, but laboratory staff were masked. The primary outcome was favourable status (negative cultures for Mycobacterium tuberculosis without a preceding unfavourable outcome) at 76 weeks; any death, bacteriological failure or recurrence, and major treatment change were considered unfavourable outcomes. All comparisons used groups of participants randomly assigned concurrently. For non-inferiority to be shown, the upper boundary of the 95% CI should be less than 10% in both modified intention-to-treat (mITT) and per-protocol analyses, with prespecified tests for superiority done if non-inferiority was shown. This trial is registered with ISRCTN, ISRCTN18148631. Between March 28, 2016, and Jan 28, 2020, 1436 participants were screened and 588 were randomly assigned. Of 517 participants in the mITT population, 133 (71%) of 187 on the control regimen and 162 (83%) of 196 on the oral regimen had a favourable outcome: a difference of 11·0% (95% CI 2·9-19·0), adjusted for HIV status and randomisation protocol (p<0·0001 for non-inferiority). By 76 weeks, 108 (53%) of 202 participants on the control regimen and 106 (50%) of 211 allocated to the oral regimen had an adverse event of grade 3 or 4; five (2%) participants on the control regimen and seven (3%) on the oral regimen had died. Hearing loss (Brock grade 3 or 4) was more frequent in participants on the control regimen than in those on the oral regimen (18 [9%] vs four [2%], p=0·0015). Of 134 participants in the mITT population who were allocated to the 6-month regimen, 122 (91%) had a favourable outcome compared with 87 (69%) of 127 participants randomly assigned concurrently to the control regimen (adjusted difference 22·2%, 95% CI 13·1-31·2); six (4%) of 143 participants on the 6-month regimen had grade 3 or 4 hearing loss. Both bedaquiline-containing regimens, a 9-month oral regimen and a 6-month regimen with 8 weeks of second-line injectable, had superior efficacy compared with a 9-month injectable-containing regimen, with fewer cases of hearing loss. USAID and Janssen Research & Development

    Economic evaluation protocol of a short, all-oral bedaquiline-containing regimen for the treatment of rifampicin-resistant tuberculosis from the STREAM trial

    Get PDF
    Introduction: A December 2019 WHO rapid communication recommended the use of 9-month all-oral regimens for treating multidrug-resistant tuberculosis (MDR-TB). Besides the clinical benefits, they are thought to be less costly than the injectable-containing regimens, for both the patient and the health system. STREAM is the first randomised controlled trial with an economical evaluation to compare all-oral and injectable-containing 9–11-month MDR-TB treatment regimens. Methods and analysis: Health system costs of delivering a 9-month injectable-containing regimen and a 9-month all-oral bedaquiline-containing regimen will be collected in Ethiopia, India, Moldova and Uganda, using ‘bottom-up’ and ‘top-down’ costing approaches. Patient costs will be collected using questionnaires that have been developed based on the STOP-TB questionnaire. The primary objective of the study is to estimate the cost utility of the two regimens, from a health system perspective. Secondary objectives include estimating the cost utility from a societal perspective as well as evaluating the cost-effectiveness of the regimens, using both health system and societal perspectives. The effect measure for the cost–utility analysis will be the quality-adjusted life years (QALY), while the effect measure for the cost-effectiveness analysis will be the efficacy outcome from the clinical trial. Ethics and dissemination: The study has been evaluated and approved by the Ethics Advisory Group of the International Union Against Tuberculosis and Lung Disease and also approved by ethics committees in all participating countries. All participants have provided written informed consent. The results of the economic evaluation will be published in a peer-reviewed journal. Trial registration number: ISRCTN18148631

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950.Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950

    Participatory Research for Low-resourced Machine Translation:A Case Study in African Languages

    Get PDF
    Research in NLP lacks geographic diversity, and the question of how NLP can be scaled to low-resourced languages has not yet been adequately solved. "Low-resourced"-ness is a complex problem going beyond data availability and reflects systemic problems in society. In this paper, we focus on the task of Machine Translation (MT), that plays a crucial role for information accessibility and communication worldwide. Despite immense improvements in MT over the past decade, MT is centered around a few high-resourced languages. As MT researchers cannot solve the problem of low-resourcedness alone, we propose participatory research as a means to involve all necessary agents required in the MT development process. We demonstrate the feasibility and scalability of participatory research with a case study on MT for African languages. Its implementation leads to a collection of novel translation datasets, MT benchmarks for over 30 languages, with human evaluations for a third of them, and enables participants without formal training to make a unique scientific contribution. Benchmarks, models, data, code, and evaluation results are released under https://github.com/masakhane-io/masakhane-mt

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill &amp; Melinda Gates Foundation

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress

    Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2\ub75th percentile and 100 as the 97\ub75th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59\ub74 (IQR 35\ub74–67\ub73), ranging from a low of 11\ub76 (95% uncertainty interval 9\ub76–14\ub70) to a high of 84\ub79 (83\ub71–86\ub77). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030
    corecore