40 research outputs found

    Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons

    Get PDF
    The growth hormone secretagogue receptor type 1a (GHSR1a) has the highest constitutive activity of any G protein coupled receptor (GPCR). GHSR1a mediates the action of the hormone ghrelin and, its activation increases transcriptional and electrical activity in hypothalamic neurons. It is known that GHSR1a is present at some specific GABAergic presynaptic terminals; however, its impact on neurotransmitter release remains elusive. The voltage gated calcium channels, CaV2.1 and CaV2.2, control neurotransmitter release at presynaptic terminals and their activities are modulated by many GPCRs. Here we show that constitutive as well as agonist-dependent GHSR1a activation trigger a strong impairment of both CaV2.1 and CaV2.2 currents in rat and mouse neurons and in a heterologous expression system. Constitutive GHSR1a activity reduces CaV2 currents by a Gi/o-dependent mechanism that involves persistent reduction in channel density at plasma membrane, whereas, ghrelin-dependent GHSR1a inhibition is reversible and involves altered CaV2 current gating via a Gq-dependent pathway. Thus, we show that GHSR1a differentially inhibits CaV2 channels by Gi/o- or Gq-protein pathways depending on its activation mode. Moreover, we present evidence suggesting that GHSR1a-mediated inhibition of CaV2 impairs GABA release in hypothalamic neurons, a mechanism that could contribute to neuronal activation by the disinhibition of postsynaptic neurons

    The Rate of Evolution of Postmating-Prezygotic Reproductive Isolation in Drosophila

    Get PDF
    International audienceReproductive isolation is an intrinsic aspect of species formation. For that reason, the identification of the precise isolating traits, and the rates at which they evolve, is crucial to understanding how species originate and persist. Previous work has measured the rates of evolution of prezygotic and postzygotic barriers to gene flow, yet no systematic analysis has studied the rates of evolution of postmating-prezygotic (PMPZ) barriers. We measured the magnitude of two barriers to gene flow that act after mating occurs but before fertilization. We also measured the magnitude of a premating barrier (female mating rate in nonchoice experiments) and two postzygotic barriers (hybrid inviability and hybrid sterility) for all pairwise crosses of all nine known extant species within the mela-nogaster subgroup. Our results indicate that PMPZ isolation evolves faster than hybrid inviability but slower than premating isolation. Next, we partition postzygotic isolation into different components and find that, as expected, hybrid sterility evolves faster than hybrid inviability. These results lend support for the hypothesis that, in Drosophila, reproductive isolation mechanisms (RIMs) that act early in reproduction (or in development) tend to evolve faster than those that act later in the reproductive cycle. Finally, we tested whether there was evidence for reinforcing selection at any RIM. We found no evidence for generalized evolution of reproductive isolation via reinforcement which indicates that there is no pervasive evidence of this evolutionary process. Our results indicate that PMPZ RIMs might have important evolutionary consequences in initiating speciation and in the persistence of new species

    Data from: The rate of evolution of postmating-prezygotic reproductive isolation in Drosophila

    No full text
    Reproductive isolation (RI) is an intrinsic aspect of species, as described in the Biological Species Concept. For that reason, the identification of the precise traits and mechanisms of RI, and the rates at which they evolve, is crucial to understanding how species originate and persist. Nonetheless, precise measurements of the magnitude of reproductive isolation are rare. Previous work has measured the rates of evolution of prezygotic and postzygotic barriers to gene flow, yet no systematic analysis has carried out the study of the rates of evolution of postmating-prezygotic (PMPZ) barriers. We systematically measured the magnitude of two barriers to gene flow that act after mating occurs but before zygotic fertilization and also measured a premating (female mating rate in nonchoice experiments) and two postzygotic barriers (hybrid inviability and hybrid sterility) for all pairwise crosses of species within the Drosophila melanogaster subgroup. Our results indicate that PMPZ isolation evolves faster than hybrid inviability but slower than premating isolation. We also describe seven new interspecific hybrids in the group. Our findings open up a large repertoire of tools that will enable researchers to manipulate hybrids and explore the genetic basis of interspecific differentiation, reproductive isolation, and speciation
    corecore