245 research outputs found

    Laboratory colonisation and genetic bottlenecks in the tsetse fly Glossina pallidipes

    Get PDF
    Background The IAEA colony is the only one available for mass rearing of Glossina pallidipes, a vector of human and animal African trypanosomiasis in eastern Africa. This colony is the source for Sterile Insect Technique (SIT) programs in East Africa. The source population of this colony is unclear and its genetic diversity has not previously been evaluated and compared to field populations.<p></p> Methodology/Principal Findings We examined the genetic variation within and between the IAEA colony and its potential source populations in north Zimbabwe and the Kenya/Uganda border at 9 microsatellites loci to retrace the demographic history of the IAEA colony. We performed classical population genetics analyses and also combined historical and genetic data in a quantitative analysis using Approximate Bayesian Computation (ABC). There is no evidence of introgression from the north Zimbabwean population into the IAEA colony. Moreover, the ABC analyses revealed that the foundation and establishment of the colony was associated with a genetic bottleneck that has resulted in a loss of 35.7% of alleles and 54% of expected heterozygosity compared to its source population. Also, we show that tsetse control carried out in the 1990's is likely reduced the effective population size of the Kenya/Uganda border population.<p></p> Conclusions/Significance All the analyses indicate that the area of origin of the IAEA colony is the Kenya/Uganda border and that a genetic bottleneck was associated with the foundation and establishment of the colony. Genetic diversity associated with traits that are important for SIT may potentially have been lost during this genetic bottleneck which could lead to a suboptimal competitiveness of the colony males in the field. The genetic diversity of the colony is lower than that of field populations and so, studies using colony flies should be interpreted with caution when drawing general conclusions about G. pallidipes biology.<p></p&gt

    Opportunities in Africa for training in genome science

    Get PDF
    Genome science is a new type of biology that unites genetics, molecular biology, computational biology and bioinformatics. The availability of the human genome sequence, as well as the genome sequences of several other organisms relevant to health, agriculture and the environment in Africa necessitates the development and delivery of several types and levels of training that will enhance the use of genome data and the associated computational resources. A survey of initiatives that provide opportunities for training in genome science is presented. Current efforts to increase the ability of African scientists to computationally process and analyse genomic and post-genomic data have the potential to produce excellent scientists who perform cutting-edge, hypothesis-based research, and who will accelerate the continent's scientific and technological development

    Morphological re-description and molecular identification of Tabanidae (Diptera) in East Africa

    Get PDF
    Biting flies of the family Tabanidae are important vectors of human and animal diseases across continents. However, records of Africa tabanids are fragmentary and mostly cursory. To improve identification, documentation and description of Tabanidae in East Africa, a baseline survey for the identification and description of Tabanidae in three eastern African countries was conducted. Tabanids from various locations in Uganda (Wakiso District), Tanzania (Tarangire National Park) and Kenya (Shimba Hills National Reserve, Muhaka, Nguruman) were collected. In Uganda, octenol baited F-traps were used to target tabanids, while NG2G traps baited with cow urine and acetone were employed in Kenya and Tanzania. The tabanids were identified using morphological and molecular methods. Morphologically, five genera (Ancala, Tabanus, Atylotus, Chrysops and Haematopota) and fourteen species of the Tabanidae were identified. Among the 14 species identified, six belonged to the genus Tabanus of which two (T. donaldsoni and T. guineensis) had not been described before in East Africa. The greatest diversity of tabanid species were collected from the Shimba Hills National Reserve, while collections from Uganda (around the shores of Lake Victoria) had the fewest number of species. However, the Ancala genus was found in Uganda, but not in Kenya or Tanzania. Maximum likelihood phylogenies of mitochondrial cytochrome c oxidase 1 (COI) genes sequenced in this study show definite concordance with morphological species identifications, except for Atylotus. This survey will be critical to building a complete checklist of Tabanidae prevalent in the region, expanding knowledge of these important vectors of human and animal diseases

    <i>Trypanosoma evansi</i>: Genetic variability detected using amplified restriction fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) analysis of Kenyan isolates

    Get PDF
    We compared two methods to generate polymorphic markers to investigate the population genetics of Trypanosoma evansi; random amplified polymorphic DNA (RAPD) and amplified restriction fragment length polymorphism (AFLP) analyses. AFLP accessed many more polymorphisms than RAPD. Cluster analysis of the AFLP data showed that 12 T.evansi isolates were very similar (‘type A’) whereas 2 isolates differed substantially (‘type B’). Type A isolates have been generally regarded as genetically identical but AFLP analysis was able to identify multiple differences between them and split the type A T. evansi isolates into two distinct clades

    Satellite-based modelling of potential tsetse (Glossina pallidipes) breeding and foraging sites using teneral and non-teneral fly occurrence data

    Get PDF
    BACKGROUND: African trypanosomiasis, which is mainly transmitted by tsetse flies (Glossina spp.), is a threat to public health and a significant hindrance to animal production. Tools that can reduce tsetse densities and interrupt disease transmission exist, but their large-scale deployment is limited by high implementation costs. This is in part limited by the absence of knowledge of breeding sites and dispersal data, and tools that can predict these in the absence of ground-truthing. METHODS: In Kenya, tsetse collections were carried out in 261 randomized points within Shimba Hills National Reserve (SHNR) and villages up to 5 km from the reserve boundary between 2017 and 2019. Considering their limited dispersal rate, we used in situ observations of newly emerged flies that had not had a blood meal (teneral) as a proxy for active breeding locations. We fitted commonly used species distribution models linking teneral and non-teneral tsetse presence with satellite-derived vegetation cover type fractions, greenness, temperature, and soil texture and moisture indices separately for the wet and dry season. Model performance was assessed with area under curve (AUC) statistics, while the maximum sum of sensitivity and specificity was used to classify suitable breeding or foraging sites. RESULTS: Glossina pallidipes flies were caught in 47% of the 261 traps, with teneral flies accounting for 37% of these traps. Fitted models were more accurate for the teneral flies (AUC = 0.83) as compared to the non-teneral (AUC = 0.73). The probability of teneral fly occurrence increased with woodland fractions but decreased with cropland fractions. During the wet season, the likelihood of teneral flies occurring decreased as silt content increased. Adult tsetse flies were less likely to be trapped in areas with average land surface temperatures below 24 °C. The models predicted that 63% of the potential tsetse breeding area was within the SHNR, but also indicated potential breeding pockets outside the reserve. CONCLUSION: Modelling tsetse occurrence data disaggregated by life stages with time series of satellite-derived variables enabled the spatial characterization of potential breeding and foraging sites for G. pallidipes. Our models provide insight into tsetse bionomics and aid in characterising tsetse infestations and thus prioritizing control areas. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13071-021-05017-5

    Using sibship reconstructions to understand the relationship between larval habitat productivity and oviposition behaviour in Kenyan Anopheles arabiensis

    Get PDF
    Background Strategies for combatting residual malaria by targeting vectors outdoors are gaining importance as the limitations of primary indoor interventions are reached. Strategies to target ovipositing females or her offspring are broadly applicable because all mosquitoes require aquatic habitats for immature development irrespective of their biting or resting preferences. Oviposition site selection by gravid females is frequently studied by counting early instar larvae in habitats; an approach which is valid only if the number of larvae correlates with the number of females laying eggs. This hypothesis was tested against the alternative, that a higher abundance of larvae results from improved survival of a similar or fewer number of families. Methods In a controlled experiment, 20 outdoor artificial ponds were left uncovered for 4 days to allow oviposition by wild mosquitoes, then covered with netting and first and second instar larvae sampled daily. Natural Anopheles habitats of two different types were also identified, and all visible larvae sampled. All larvae were identified to species, and most samples of the predominant species, Anopheles arabiensis, were genotyped using microsatellites for sibling group reconstructions using two contrasting softwares, BAPS and COLONY. Results In the ponds, the number of families reconstructed by each software significantly predicted larval abundance (BAPS R2 = 0.318, p = 0.01; COLONY R2 = 0.476, p = 0.001), and suggested that around 50% of females spread larvae across multiple ponds (skip oviposition). From natural habitats, the mean family size again predicted larval abundance using BAPS (R2 = 0.829, p = 0.017) though not using COLONY (R2 = 0.218, p = 0.68), but both softwares once more suggested high rates of skip oviposition (in excess of 50%). Conclusion This study shows that, whether in closely-located artificial habitats or natural breeding sites, higher early instar larval densities result from more females laying eggs in these sites. These results provide empirical support for use of early instar larval abundance as an index for oviposition site preference. Furthermore, the sharing of habitats by multiple females and the high skip-oviposition rate in An. arabiensis suggest that larviciding by auto-dissemination of insecticide may be successful

    Odorant and gustatory receptors in the tsetse fly Glossina morsitans morsitans

    Get PDF
    Tsetse flies use olfactory and gustatory responses, through odorant and gustatory receptors (ORs and GRs), to interact with their environment. Glossina morsitans morsitans genome ORs and GRs were annotated using homologs of these genes in Drosophila melanogaster and an ab initio approach based on OR and GR specific motifs in G. m. morsitans gene models coupled to gene ontology (GO). Phylogenetic relationships among the ORs or GRs and the homologs were determined using Maximum Likelihood estimates. Relative expression levels among the G. m. morsitans ORs or GRs were established using RNA-seq data derived from adult female fly. Overall, 46 and 14 putative G. m. morsitans ORs and GRs respectively were recovered. These were reduced by 12 and 59 ORs and GRs respectively compared to D. melanogaster. Six of the ORs were homologous to a single D. melanogaster OR (DmOr67d) associated with mating deterrence in females. Sweet taste GRs, present in all the other Diptera, were not recovered in G. m. morsitans. The GRs associated with detection of CO2 were conserved in G. m. morsitans relative to D. melanogaster. RNA-sequence data analysis revealed expression of GmmOR15 locus represented over 90% of expression profiles for the ORs. The G. m. morsitans ORs or GRs were phylogenetically closer to those in D. melanogaster than to other insects assessed. We found the chemoreceptor repertoire in G. m. morsitans smaller than other Diptera, and we postulate that this may be related to the restricted diet of blood-meal for both sexes of tsetse flies. However, the clade of some specific receptors has been expanded, indicative of their potential importance in chemoreception in the tsetse.German Academic Exchange Service (DAAD) South African Research Chair Initiative Department of Science and Technology National Research Foundation of South AfricaWeb of Scienc
    • …
    corecore