4,457 research outputs found

    Private set intersection: A systematic literature review

    Get PDF
    Secure Multi-party Computation (SMPC) is a family of protocols which allow some parties to compute a function on their private inputs, obtaining the output at the end and nothing more. In this work, we focus on a particular SMPC problem named Private Set Intersection (PSI). The challenge in PSI is how two or more parties can compute the intersection of their private input sets, while the elements that are not in the intersection remain private. This problem has attracted the attention of many researchers because of its wide variety of applications, contributing to the proliferation of many different approaches. Despite that, current PSI protocols still require heavy cryptographic assumptions that may be unrealistic in some scenarios. In this paper, we perform a Systematic Literature Review of PSI solutions, with the objective of analyzing the main scenarios where PSI has been studied and giving the reader a general taxonomy of the problem together with a general understanding of the most common tools used to solve it. We also analyze the performance using different metrics, trying to determine if PSI is mature enough to be used in realistic scenarios, identifying the pros and cons of each protocol and the remaining open problems.This work has been partially supported by the projects: BIGPrivDATA (UMA20-FEDERJA-082) from the FEDER Andalucía 2014– 2020 Program and SecTwin 5.0 funded by the Ministry of Science and Innovation, Spain, and the European Union (Next Generation EU) (TED2021-129830B-I00). The first author has been funded by the Spanish Ministry of Education under the National F.P.U. Program (FPU19/01118). Funding for open access charge: Universidad de Málaga/CBU

    Probing the "μ\mu from ν\nu" supersymmetric standard model with displaced multileptons from the decay of a Higgs boson at the LHC

    Get PDF
    The "μ\mu from ν\nu" supersymmetric standard model (μν\mu\nuSSM) cures the μ\mu-problem and concurrently reproduces measured neutrino data by using a set of usual right-handed neutrino superfields. Recently, the LHC has revealed the first scalar boson which naturally makes it tempting to test μν\mu\nuSSM in the light of this new discovery. We show that this new scalar while decaying to a pair of unstable long-lived neutralinos, can lead to a distinct signal with non-prompt multileptons. With concomitant collider analysis we show that this signal provides an unmistakable signature of the model, pronounced with light neutralinos. Evidence of this signal is well envisaged with sophisticated displaced vertex analysis, which deserves experimental attention.Comment: 5 pages, 3 figures, title, text, abstract and references modifie

    Hunting physics beyond the standard model with unusual W±W^\pm and ZZ decays

    Get PDF
    Nonstandard on-shell decays of W±W^\pm and ZZ bosons are possible within the framework of extended supersymmetric models, i.e., with singlet states and/or new couplings compared to the minimal supersymmetric standard model. These modes are typically encountered in regions of the parameter space with light singlet-like scalars, pseudoscalars, and neutralinos. In this letter we emphasize how these states can lead to novel signals at colliders from ZZ- or W±W^\pm-boson decays with prompt or displaced multileptons/tau jets/jets/photons in the final states. These new modes would give distinct evidence of new physics even when direct searches remain unsuccessful. We discuss the possibilities of probing these new signals using the existing LHC run-I data set. We also address the same in the context of the LHC run-II, as well as for the future colliders. We exemplify our observations with the "μ\mu from ν\nu" supersymmetric standard model, where three generations of right-handed neutrino superfields are used to solve shortcomings of the minimal supersymmetric standard model. We also extend our discussion for other variants of supersymmetric models that can accommodate similar signatures.Comment: New discussions and references added, 8 pages, 1 figure, matches with the published version in Phys. Rev.

    A Chandra View Of Nonthermal Emission In The Northwestern Region Of Supernova Remnant RCW 86: Particle Acceleration And Magnetic Fields

    Get PDF
    The shocks of supernova remnants (SNRs) are believed to accelerate particles to cosmic ray (CR) energies. The amplification of the magnetic field due to CRs propagating in the shock region is expected to have an impact on both the emission from the accelerated particle population, as well as the acceleration process itself. Using a 95 ks observation with the Advanced CCD Imaging Spectrometer (ACIS) onboard the Chandra X-ray Observatory, we map and characterize the synchrotron emitting material in the northwestern region of RCW 86. We model spectra from several different regions, filamentary and diffuse alike, where emission appears dominated by synchrotron radiation. The fine spatial resolution of Chandra allows us to obtain accurate emission profiles across 3 different non-thermal rims in this region. The narrow width (l = 10''-30'') of these filaments constrains the minimum magnetic field strength at the post-shock region to be approximately 80 {\mu}G.Comment: 7 pages, 3 figures, submitted for publication at the Astrophysical Journa

    Looking for the left sneutrino LSP with displaced-vertex searches

    Get PDF
    We analyze a displaced dilepton signal expected at the LHC for a tau left sneutrino as the lightest supersymmetric particle with a mass in the range 4545-100100 GeV. The sneutrinos are pair produced via a virtual WW, ZZ or γ\gamma in the ss channel and, given the large value of the tau Yukawa coupling, their decays into two dileptons or a dilepton plus missing transverse energy from neutrinos can be significant. The discussion is carried out in the μν\mu \nuSSM, where the presence of RR-parity violating couplings involving right-handed neutrinos solves the μ\mu problem and can reproduce the neutrino data. To probe the tau left sneutrinos we compare the predictions of the μν\mu \nuSSM with the ATLAS search for long-lived particles using displaced lepton pairs in pppp collisions at s=8\sqrt s= 8 TeV, allowing us to constrain the parameter space of the model. We also consider an optimization of the trigger requirements used in existing displaced-vertex searches by means of a High Level Trigger that exploits tracker information. This optimization is generically useful for a light metastable particle decaying into soft charged leptons. The constraints on the sneutrino turn out to be more stringent. We finally discuss the prospects for the 1313 TeV LHC searches as well as further potential optimizations.Comment: Version published in PRD, discussions expanded, references added, LEP and LHC constraints discussed in more detail, 29 pages, 9 figures, 9 table

    The Role of Stellar Feedback in the Dynamics of HII Regions

    Full text link
    Stellar feedback is often cited as the biggest uncertainty in galaxy formation models today. This uncertainty stems from a dearth of observational constraints as well as the great dynamic range between the small scales (<1 pc) where the feedback occurs and the large scales of galaxies (>1 kpc) that are shaped by this feedback. To bridge this divide, in this paper we aim to assess observationally the role of stellar feedback at the intermediate scales of HII regions. In particular, we employ multiwavelength data to examine several stellar feedback mechanisms in a sample of 32 HII regions in the Large and Small Magellanic Clouds (LMC and SMC, respectively). Using optical, infrared, radio, and X-ray images, we measure the pressures exerted on the shells from the direct stellar radiation, the dust-processed radiation, the warm ionized gas, and the hot X-ray emitting gas. We find that the warm ionized gas dominates over the other terms in all of the sources, although two have comparable dust-processed radiation pressures to their warm gas pressures. The hot gas pressures are comparatively weak, while the direct radiation pressures are 1-2 orders of magnitude below the other terms. We discuss the implications of these results, particularly highlighting evidence for hot gas leakage from the HII shells and regarding the momentum deposition from the dust-processed radiation to the warm gas. Furthermore, we emphasize that similar observational work should be done on very young HII regions to test whether direct radiation pressure and hot gas can drive the dynamics at early times.Comment: 19 pages, 8 figures; accepted by Ap

    Dark matter candidates in the NMSSM with RH neutrino superfields

    Full text link
    R-parity conserving supersymmetric models with right-handed (RH) neutrinos are very appealing since they could naturally explain neutrino physics and also provide a good dark matter (DM) candidate such as the lightest supersymmetric particle (LSP). In this work we consider the next-to-minimal supersymmetric standard model (NMSSM) plus RH neutrino superfields, with effective Majorana masses dynamically generated at the electroweak scale (EW). We perform a scan of the relevant parameter space and study both possible DM candidates: RH sneutrino and neutralino. Especially for the case of RH sneutrino DM we analyse the intimate relation between both candidates to obtain the correct amount of relic density. Besides the well-known resonances, annihilations through scalar quartic couplings and coannihilation mechanisms with all kind of neutralinos, are crucial. Finally, we present the impact of current and future direct and indirect detection experiments on both DM candidates.Comment: Version published in JCAP, 40 pages, 8 figures, 6 table

    Causal Scoring Medical Image Explanations: A Case Study On Ex-vivo Kidney Stone Images

    Full text link
    On the promise that if human users know the cause of an output, it would enable them to grasp the process responsible for the output, and hence provide understanding, many explainable methods have been proposed to indicate the cause for the output of a model based on its input. Nonetheless, little has been reported on quantitative measurements of such causal relationships between the inputs, the explanations, and the outputs of a model, leaving the assessment to the user, independent of his level of expertise in the subject. To address this situation, we explore a technique for measuring the causal relationship between the features from the area of the object of interest in the images of a class and the output of a classifier. Our experiments indicate improvement in the causal relationships measured when the area of the object of interest per class is indicated by a mask from an explainable method than when it is indicated by human annotators. Hence the chosen name of Causal Explanation Score (CaES

    Probing the μν\mu\nuSSM with light scalars, pseudoscalars and neutralinos from the decay of a SM-like Higgs boson at the LHC

    Get PDF
    The "μ\mu from ν\nu" supersymmetric standard model (μν\mu\nuSSM) can accommodate the newly discovered Higgs-like scalar boson with a mass around 125 GeV. This model provides a solution to the μ\mu-problem and simultaneously reproduces correct neutrino physics by the simple use of right-handed neutrino superfields. These new superfields together with the introduced RR-parity violation can produce novel and characteristic signatures of the μν\mu\nuSSM at the LHC. We explore the signatures produced through two-body Higgs decays into the new states, provided that these states lie below in the mass spectrum. For example, a pair produced light neutralinos depending on the associated decay length can give rise to displaced multi-leptons/taus/jets/photons with small/moderate missing transverse energy. In the same spirit, a Higgs-like scalar decaying to a pair of scalars/pseudoscalars can produce final states with prompt multi-leptons/taus/jets/photons.Comment: 58 pages, 3 figures, three new references added, matches with the published version in JHE
    corecore