462 research outputs found
Why do Tornados and Hail Storms Rest on Weekends?
When anthropogenic aerosols over the eastern USA during summertime are at their weekly mid-week peak, tornado and hail storm activity there is also near its weekly maximum. The weekly cycle in storm activity is statistically significant and unlikely to be due to natural variability. The pattern of variability supports the hypothesis that air pollution aerosols invigorate deep convective clouds in a moist, unstable atmosphere, to the extent of inducing production of large hailstones and tornados. This is caused by the effect of aerosols on cloud-drop nucleation, making cloud drops smaller, delaying precipitation-forming processes and their evaporation, and hence affecting cloud dynamics
Midweek Increase in U.S. Summer Rain and Storm Heights, Suggests Air Pollution Invigorates Rainstorms
Tropical Rainfall Measuring Mission (TRMM) satellite data show a significant midweek increase in summertime rainfall over the southeast U.S., due to afternoon intensification. TRMM radar data show a significant midweek increase in rain area and in the heights reached by afternoon storms. Weekly variations in model-reanalysis wind patterns over the region and in rain-gauge data are consistent with the satellite data. A midweek decrease of rainfall over the nearby Atlantic is also seen. EPA measurements of particulate concentrations show a midweek peak over much of the U.S. These observations are consistent with the theory that anthropogenic air pollution suppresses cloud-drop coalescence and early rainout during the growth of thunderstorms over land, allowing more water to be carried above the 0 C isotherm, where freezing yields additional latent heat, invigorating the storms--most dramatically evidenced by the shift in the midweek distribution of afternoon-storm heights--and producing large ice hydrometeors. The enhanced convection induces regional convergence, uplifting and an overall increase of rainfall. Compensating downward air motion suppresses convection over the adjacent ocean areas. Pre-TRMM-era data suggest that the weekly cycle only became strong enough to be detectable beginning in the 1980's. Rain-gauge data also suggest that a weekly cycle may have been detectable in the 1940's, but with peak rainfall on Sunday or Monday, possibly explained by the difference in composition of aerosol pollution at that time. This "weekend effect" may thus offer climate researchers an opportunity to study the regional climate-scale impact of aerosols on storm development and monsoon-like circulation
Recommended from our members
Advances in understanding large-scale responses of the water cycle to climate change
Globally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at âŒ2â3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to inâstorm and largerâscale feedback processes, while changes in largeâscale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water abstraction, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population
Recommended from our members
Detrainment Dominates CCN Concentrations Around Non-Precipitating Convective Clouds Over the Amazon
We investigated the relationship between the number concentration of cloud droplets (Nd) in ice-free convective clouds and of particles large enough to act as cloud condensation nuclei (CCN) measured at the lateral boundaries of cloud elements. The data were collected during the ACRIDICON-CHUVA aircraft campaign over the Amazon Basin. The results indicate that the CCN particles at the lateral cloud boundaries are dominated by detrainment from the cloud. The CCN concentrations detrained from non-precipitating convective clouds are smaller compared to below cloud bases. The detrained CCN particles from precipitating cloud volumes have relatively larger sizes, but lower concentrations. Our findings indicate that CCN particles ingested from below cloud bases are activated into cloud droplets, which evaporate at the lateral boundaries and above cloud base and release the CCN again to ambient cloud-free air, after some cloud processing. These results support the hypothesis that the CCN around the cloud are cloud-processed
The tissue-type plasminogen activator-plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans
The neurovascular unit provides a dynamic interface between the circulation and central nervous system. Disruption of neurovascular integrity occurs in numerous brain pathologies including neurotrauma and ischaemic stroke. Tissue plasminogen activator is a serine protease that converts plasminogen to plasmin, a protease that dissolves blood clots. Besides its role in fibrinolysis, tissue plasminogen activator is abundantly expressed in the brain where it mediates extracellular proteolysis. However, proteolytically active tissue plasminogen activator also promotes neurovascular disruption after ischaemic stroke; the molecular mechanisms of this process are still unclear. Tissue plasminogen activator is naturally inhibited by serine protease inhibitors (serpins): plasminogen activator inhibitor-1, neuroserpin or protease nexin-1 that results in the formation of serpin:protease complexes. Proteases and serpin:protease complexes are cleared through high-affinity binding to low-density lipoprotein receptors, but their binding to these receptors can also transmit extracellular signals across the plasma membrane. The matrix metalloproteinases are the second major proteolytic system in the mammalian brain, and like tissue plasminogen activators are pivotal to neurological function but can also degrade structures of the neurovascular unit after injury. Herein, we show that tissue plasminogen activator potentiates neurovascular damage in a dose-dependent manner in a mouse model of neurotrauma. Surprisingly, inhibition of activity following administration of plasminogen activator inhibitor-1 significantly increased cerebrovascular permeability. This led to our finding that formation of complexes between tissue plasminogen activator and plasminogen activator inhibitor-1 in the brain parenchyma facilitates post-traumatic cerebrovascular damage. We demonstrate that following trauma, the complex binds to low-density lipoprotein receptors, triggering the induction of matrix metalloproteinase-3. Accordingly, pharmacological inhibition of matrix metalloproteinase-3 attenuates neurovascular permeability and improves neurological function in injured mice. Our results are clinically relevant, because concentrations of tissue plasminogen activator: plasminogen activator inhibitor-1 complex and matrix metalloproteinase-3 are significantly elevated in cerebrospinal fluid of trauma patients and correlate with neurological outcome. In a separate study, we found that matrix metalloproteinase-3 and albumin, a marker of cerebrovascular damage, were significantly increased in brain tissue of patients with neurotrauma. Perturbation of neurovascular homeostasis causing oedema, inflammation and cell death is an important cause of acute and long-term neurological dysfunction after trauma. A role for the tissue plasminogen activator-matrix metalloproteinase axis in promoting neurovascular disruption after neurotrauma has not been described thus far. Targeting tissue plasminogen activator: plasminogen activator inhibitor-1 complex signalling or downstream matrix metalloproteinase-3 induction may provide viable therapeutic strategies to reduce cerebrovascular permeability after neurotraum
Apparent Fractality Emerging from Models of Random Distributions
The fractal properties of models of randomly placed -dimensional spheres
(=1,2,3) are studied using standard techniques for calculating fractal
dimensions in empirical data (the box counting and Minkowski-sausage
techniques). Using analytical and numerical calculations it is shown that in
the regime of low volume fraction occupied by the spheres, apparent fractal
behavior is observed for a range of scales between physically relevant
cut-offs. The width of this range, typically spanning between one and two
orders of magnitude, is in very good agreement with the typical range observed
in experimental measurements of fractals. The dimensions are not universal and
depend on density. These observations are applicable to spatial, temporal and
spectral random structures. Polydispersivity in sphere radii and
impenetrability of the spheres (resulting in short range correlations) are also
introduced and are found to have little effect on the scaling properties. We
thus propose that apparent fractal behavior observed experimentally over a
limited range may often have its origin in underlying randomness.Comment: 19 pages, 12 figures. More info available at
http://www.fh.huji.ac.il/~dani
Detrainment Dominates CCN Concentrations Around Non Precipitating Convective Clouds Over the Amazon
We investigated the relationship between the number concentration of cloud droplets (Nd) in ice-free convective clouds and of particles large enough to act as cloud condensation nuclei (CCN) measured at the lateral boundaries of cloud elements. The data were collected during the ACRIDICON CHUVA aircraft campaign over the Amazon Basin. The results indicate that the CCN particles at the lateral cloud boundaries are dominated by detrainment from the cloud
- âŠ