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Why do tornados and hail storms rest on weekends? 

Daniel Rosenfeld I * and Thomas L. Be1l2 

ABSTRACT 

This study shows for the first time statistical evidence that when anthropogenic aerosols 

over the eastern USA during summertime are at their weekly mid-week peak, tornado and 

hail storm activity there is also near its weekly maximum. The weekly cycle in 

summertime storm activity for 1995-2009 was found to be statistically significant and 

unlikely to be due to natural variability. It correlates well with the weekly cycle of other 

previously observed measures of storm activity. The pattern of variability supports the 

hypothesis that air pollution aerosols invigorate deep convective clouds in a moist, 

unstable atmosphere, to the extent of inducing production of large hailstones and 

tornados. This is caused by the effect of aerosols on cloud-drop nucleation, making cloud 

drops smaller and hydrometeors larger. According to simulations the larger ice 

hydrometeors contribute to more hail. The reduced evaporation from the larger 

hydrometeors produces weaker cold pools. Simulations showed that too cold and fast 

expanding pools inhibit the formation of tornados. The statistical observations suggest 

that this might be the mechanism by which the weekly modulation in pollution aerosols is 

causing the weekly cycle in severe convective storms during summer over the eastern 

USA. 
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1. Introduction 

This study puts to a statistical test the hypothesis that air pollution increases the chance of 

severe convective storms. The motivation for posing this question is based on physical 

considerations that are described in Section 1.2 of the Introduction. These considerations 

have already been partially supported by the observations of a weekly cycle in rainfall, 

storm heights, and large-scale vertical winds, made by Bell et al [2008]. We believe this 

hypothesis does two things: 1) it provides a framework for understanding the 

observations originally reported by Bell et at. [2008]; and 2) it has been a very successful 

tool for predicting weekly cycles in other meteorological quantities, some of which have 

been reported elsewhere [e.g., lightning activity [Bell et al, 2009a], and fractional cloud 

cover and cloud-top temperatures [mentioned in Bell et al, 2009b)], and some of which 

(weekly cycles in hailstorm and tornado activity) are reported here. 

We believe that a strong observational case is made in this paper for the existence of 

a weekly cycle in hailstorm and tornado activity over the eastern U.S. during the summer. 

We would not have looked for such evidence had we not had the physical theory we 

present below to guide us. Nevertheless, we should emphasize that the observations we 

report here only show a correlation in hailstorm and tornado activity with the well­

established weekly cycle in pollution over the same area, and correlations do not prove 

causality. These observations provide the impetus for more detailed observational studies 

and advances in modeling of the effects of aerosols on storm development that will be 

capable of establishing the causal connection, a connection we can only present as a 

hypothesis here. 
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1.1 The weekly cycle in rain intensity and lightning activity 

The weekly cycle of working weekdays and resting weekends is associated with 

weekly-varying levels of particulate air pollution [e.g., Bell et al., 2008]. This cycle has 

been shown to be associated with weekly cycles of midweek rainfall amounts, stonn 

heights [Bell et aI., 2008; Bell et al. 2009b], and lightning activity [Bell et al., 2009a] in 

the wann and moist climate of summer months in the southeast USA. It was 

hypothesized that this is caused by mid-week enhanced particulate air pollution 

invigorating convective storms, as will be described in Section 1.2. Theoretical 

considerations and cloud simulations, described in Section 1.3, support this hypothesis. 

1.2 The physical basis for aerosols invigorating convective clouds 

Particulate air pollution can invigorate convective storms whose cloud bases are 

warm enough that the cloudy air has to rise several km before reaching the freezing level. 

In clouds forming in pollution-free air, rain can develop and precipitate from the lower 

parts of the cloud without freezing. This early rain can be inhibited by the pollution 

aerosol particles that act as cloud drop condensation nuclei (CCN) and nucleate greater 

concentrations of smaller cloud drops that are slower to coalesce into rain drops [Gunn 

and Phillips, 1957]. In clouds with wann cloud-base temperatures the freezing level is 

several km above cloud base, so that rain can develop and fall from the rising air in the 

cloud. Because the effect of aerosols is to suppress coalescence, rain is delayed and a 

larger fraction of the cloud water ascends above the O°C isotherm level, where it is 

accreted on ice precipitation particles that fall and melt at lower levels [MaUnie and 

Pantikis, 1995; Andreae et aI., 2004]. The additional release oflatent heat of freezing 
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aloft and reabsorbed heat at lower levels by the melting ice implies greater upward heat 

transport for the same amount of surface precipitation in the more polluted atmosphere. 

In addition, greater evaporative cooling of the cloud water in the downdrafts transfers 

even more heat downward [Lee et ai., 2010]. This means that more instability is 

consumed for the same amount of rainfall. The inevitable outcome is invigoration of the 

convective clouds [Rosenfeid et ai., 2008]. Cloud simulations have supported this 

hypothesis by showing that updrafts increase in warm-base clouds (- 20°C) with added 

aerosols that suppress the warm-rain processes [Khain et ai., 2004, 2005, 2008; Khain 

and Lynn, 2009; Wang, 2005; Tao et al., 2007; Lee et ai., 2008a; van den Heever et ai. 

2006; van den Heever and Cotton 2007; Ntelekos et ai. 2009]. According to these 

simulations, invigoration was not necessarily associated with added rainfall amounts. 

Enhanced rainfall was simulated only in warm, moist, unstable and low shear 

environments [Khain et ai., 2008; Lee et ai., 2008b; Fan et al., 2007 and 2009]. The 

stronger updrafts and downdrafts resulted in more coherent organization of the simulated 

convection that feeds back into the intensity of the storms [Nteiekos et ai. 2009; Lee et 

ai., 2010]. The invigoration was supported also by observations of more polluted 

convective clouds growing taller [Koren et ai., 2005, 2008 and 2010]. 

1.2 The physical basis for aerosols enhancing lightning, hail and tornadoes 

The invigorated updrafts with added supercooled water and ice hydrometeors 

provide the conditions for enhanced cloud electrification [Molinie and Pontikis, 1995; 

Williams et ai., 2002; Andreae et ai., 2004]. However, the observational evidence was 

questioned due to the difficulty in separating the roles of meteorology and aerosols 

[Lyons et ai., 1998; Williams and Stanfill, 2002; Williams et ai., 2002; Williams, 2005]. 
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Critical supporting observational evidence for the validity of the invigoration hypothesis 

was obtained very recently, where volcanic aerosols, whose variability was completely 

independent of meteorology, were observed to invigorate deep convective clouds over the 

northwest subtropical Pacific Ocean and more than double the lightning activity [Yuan et 

ai., 2011; Langenberg, 2011]. 

The greater amount of supercooled cloud water in polluted situations means greater 

growth rate of ice hydrometeors. The stronger updrafts mean that larger hail stones can 

be suspended in the cloud before falling to the ground. Therefore, it is reasonable to 

expect that clouds in more polluted air would produce larger hail stones. This is 

supported by some observations [Andreae et ai., 2004; Wang et ai., 2009] and 

simulations [Storer et ai., 2010; Khain et ai., 2011]. 

The dynamics of convective storms respond to the initial changes in precipitation by 

changes in the downdrafts and their evaporative cooling, which feed the cold pools and 

their gust fronts. Early simulations [Gilmore et ai., 2004; van den Reever and Cotton, 

2004] showed that storm dynamics was very sensitive to changes in hydrometeor size, 

such that smaller hydrometeors created larger cold pools and stronger gust fronts that fed 

back to the storm dynamics. Colder downdrafts would produce a faster moving gust front 

that would tend to cause faster propagation of the squall line. A supercell can be regarded 

as quasi steady state convective storm, where the gust front is not outrunning and 

undercutting the updraft in the feeder clouds. Therefore, less evaporative cooling into the 

downdraft would reduce the cooling and extent of the cold pool. A slower moving gust 
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front with respect to its originating cell would drive the convective system closer to a 

state of a supercell, which is the typical cloud type that produces large hail and tornadoes. 

Ludlam [1963] proposed that air parcels within the downdraft tended to be less 

negatively buoyant (warmer) in tornadic vs. nontornadic supercells. Tornadic vortices 

increased in intensity and longevity as downdraft parcel buoyancy increased, because 

colder parcels were more resistant to lifting. This was supported by observational and 

numerical modeling studies [Markowski et al., 2002 and 2003]. Simulations of the 

sensitivity of tornadogenesis to the hydrometeor size distribution, done at the high 

resolution of 100 m [Snook and Xue, 2008], showed that by merely increasing the 

hydrometeor size an EF2 intensity tornado was produced by the model. When the cold 

pool is strengthened by decreasing the hydrometeor sizes, the updraft is tilted rearward by 

the strong, surging gust front, causing a disconnection between low-level circulation 

centers near the gust front and the mid-level mesocyclone. 

Clouds with smaller drops were observed to produce larger rain drops for the same 

rain intensity [Rosenfeld and Ulbrich, 2003]. This was confirmed by simulations of warm 

rain [Altaratz et al., 2008] and mixed phase clouds [Khain et al., 2011]. Incorporating 

this effect in simulations of an idealized supercell thunderstorm [Lerach et al., 2008] 

showed that the added aerosols suppressed the precipitation and produced larger and 

fewer hailstones and raindrops. This produced an EF-I tornado. The unpolluted 

simulation produced more evaporative cooling, and thus a stronger surface cold pool that 

surged and destroyed the rear flank downdraft structure. This resulted in a single gust 

front that propagated more rapidly away from the storm system, separating the low-level 

vorticity source from the parent storm and thus hindering the tornadogenesis process. 
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In this brief review we have shown that there is a physical basis for the hypothesis 

that added aerosols can contribute to the occurrence of large hail and tornadoes. In the 

next sections the hypothesis that the weekly cycle in pollution aerosols is associated with 

a similar cycle in the hail and tornadoes will be tested using observational data for hail 

and tornado activity. 

2. The data 

Based on the physical considerations above, we expect that the occurrences of severe 

convective storms would be enhanced in a more polluted atmosphere during the summer 

months in the eastern USA, where the convective storms occur in a warm and moist 

atmosphere and are least forced by synoptic weather systems such as cold fronts. In order 

to test whether there is a weekly cycle, daily counts of tornados or hail, categorized by 

intensity, were analyzed. 

Data for tornado and hail observations were obtained from the web site of the Storm 

Prediction Center [SPC] of the National Oceanic and Atmospheric Administration 

[Carbin, 2010]. The observational data maintained by the SPC are based on reports 

collected by local National Weather Service Forecast Offices from a wide variety of 

sources (trained spotters, emergency personnel, the media, the general public, etc.). The 

assignment of tornado strength on the enhanced Fujita scale [EF] for a tornado probably 

reflects both estimates of the intrinsic strength of the tornado and valuations of the level 

of property damage found along the path of the tornado. A characteristic hailstone size is 

assigned to hail storm events. The NOAA Warning Coordination Meteorologist attempts 

to identify duplicate observations and storms that span several jurisdictions. The data we 

used were current as of 16 March 2010. 
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Schaeffer and Edwards [1999] suggest a number of possible biases in these data: 

tornados generally go unreported where no one lives; both population and population 

awareness has increased over the years; and the adoption of warning systems has made 

people more alert to tornados. More tornados are observed near populated areas than 

away from them. Storms that are particularly severe are probably missed less often, 

however. The total numbers of tornados and of hail storms have generally trended 

upwards with the years (Figure 1), but the conventions for attributing a given Fujita scale 

to a storm have also evolved. Rapid increases in the numbers reported may be due to the 

introduction of new technology: implementation of the WSR-88D radars with Doppler 

capability in about 1991, for example, may have led to increased reporting of tornados 

after that date. An analysis by Ray et al. [2003] suggests that tornados are reported more 

often near population centers and that tornado occurrences prior to 1992 may have been 

underestimated by about 40%. Contrariwise, Aguirre et al. [1993, 1994] conclude that 

some of these "biases" may in fact be caused by environmental changes imposed by 

human habitation. 

The observational biases that may be present in the data can easily be imagined to 

change with the day of the week. Weekly changes in media coverage are possible, for 

instance. We argue later in the paper that both the lack of a weekly cycle in the less 

populated western half of the U.S. and during the spring season in the eastern half, and 

the agreement of the weekly cycle in tornado and hail activity seen in the eastern half 

with the weekly cycle seen in other indicators of severe storm activity (indicators that are 

not subject to the same concerns about weekly biases in the observational system) 
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suggest that the weekly variations in tornado and hail activity are mostly real and not the 

result of weekly shifts in coverage by the observational network. 

In preparing the data for analysis, we edited a small fraction of the data entries based 

on the recommendations accompanying the data provided by the SPC and on the need to 

resolve various ambiguities. Entries with missing state identifications were ignored. 

Entries with either zero latitude or longitude locations were ignored. Entries with 

negative Fujita scales or hail diameters were ignored. Apparently misidentified time 

zones were corrected. Multiple entries associated with a single tornado event were 

consolidated into one entry (not an issue in the hail dataset). Tornados that crossed state 

boundaries were treated as two separate events, however. Fifteen entries of hail sizes of 

0.25 and 0.5 inches in 2007 were pooled with the entries for 0.75 inches. In total, fewer 

than 2% of the tornado dataset entries required editing. A far smaller percentage of hail 

data entries required editing. The number of tornado events for 1980-2009 in our edited 

dataset was approximately 33,000, while the number of hail events was approximately 

235,000. 

3. The data analysis 

In the following subsections we provide details about the assumptions and methods 

used in the statistical analysis of the tornado and hailstorm data. 

3.1. Statistical model of data under the null hypothesis 
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Testing the data for the presence of a weekly cycle requires a description of the 

statistics of the data under the null hypothesis, which is that the frequency of tornados or 

hailstorms does not vary cyclically with the day of the week. In modeling the statistics of 

hailstorms and tornado occurrences under the null hypothesis, we try to accommodate the 

known variations in statistics with the season and year. Our goal is not to determine the 

"true" seasonal cycle or decadal trend but simply to produce something likely to be closer 

to the truth than ignoring the seasonal cycle or year-by-year trend altogether. 

We used the average seasonal cycle over the years 1980-2009 to represent the 

modulation of the expected count with the seasons (Le., with the day of the year). 

Though we used 15 years of data (1980-1994) prior to the period we are concentrating on 

(1995-2009), they were used only to help establish the background seasonal cycles and 

decadal-scale trends, and for the bootstrap statistical analysis described later. The 

seasonal cycle estimated from 30 years of data is smoother than the cycle estimated using 

15 years (1995-2009), as would be expected, but is not substantially different. We 

believe that using data prior to 1995-2009 to increase the stability of our estimate of the 

seasonal cycle increases the overall robustness of our statistics, but that if we had 

confined our averaging to the years 1995-2009 our conclusions would not be changed in 

any substantial way. 

We show in Figure 2 the average number of reported tornados for each day of the 

year. The averages for each day of the year in Figure 2 exhibit quite a lot of variability 

from day to day, almost certainly due to the sample size (30 samples, one for each year) 

in the daily averages. Rather than trying to build a smoother, parameterized model for 

the seasonal cycle, we applied a kind of running average to the 365 daily averages (leap 
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years treated as having 365 days). The filter devised by Lee [1986] produced a 

satisfactory curve when we applied the filter twice with a window size of 11 days (on 

either side of the central value), as shown in Figure 2. The Lee filter produces a smooth 

fit to the data but tries also to capture sudden jumps in the local mean. 

The annual counts for each year from 1980 to 2009 vary quite a bit from year to year 

(e.g., see Figure 1), possibly attributable to large-scale influences such as ENSO or to 

sample sizes, but there appears to be a decadal trend in the counts as well. Some of these 

trends can be explained by changes in the methods of collecting the data, as mentioned 

above. 

The seasonal cycles of the different tornado strengths are very similar, we found, as 

are the seasonal cycles for different hail sizes, except for overall normalization. 

In order to test whether the tornado/hailstorm statistics differ significantly from what 

would be expected under the null hypothesis that there is no weekly cycle, we need a 

statistical model for the expected number of storms under the null hypothesis. Since we 

only test data from particUlar seasons rather than from a full year, we take this into 

account in constructing the model. We assume that the expected number of tornado/hail 

events for a given day and season/year is proportional to the total number of storms for 

that season (thus capturing the interannual variability in Figure 1) and to the average 

number of storms for the given day of the year (as represented by the smooth curve in 

Figure 2). If there is a weekly cycle, we assume that the cycle is described by a 

sinusoidal oscillation multiplying the expected number (Equation 3 below). 
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To represent the expected number of tornados no(y,)) in year y and day j for 

summertime tornados (June 1 August 31, i.e., 152 ~j ~ 243) under the null hypothesis, 

then, we assume that the number is proportional to the number of tornados that summer 

n(y) and to the seasonal cyclefO) represented by the smooth curve in Figure 2. Thus, 

. f( j) 
nOr y,j) = n( y) 243 

~ )'-152 f( j') 

(1) 

If n(y,)) is the actual number of observed storm occurrences in year y for day j,j = 1, ... , 

365 (or 366 in a leap year), we define the ratio variable 

r( y,j) = n( y,j)/ nO(y,j), (2) 

which has an average very near 1 when averaged over all years of data, or when averaged 

over allj, by construction. 

A plot (not shown) of the variance of the ratio variable (2) over the 92 days of each 

summer vs. the number of tornados for that summer indicates that the variance is fairly 

uniform over the years and doesn't seem to vary in a consistent way with the number of 

tornados that summer. This suggests that it is reasonable to treat the statistics of the ratio 

variable (2) as stationary from year to year. 

3.2. Statistical model of weekly cycle 

We determine whether there is a weekly cycle in the ratio variable r(y,)) by fitting 

the time-dependent data r(t) to a 7-day sinusoid 

r(t) = ro + 17 cos[W?( t - Cfi7)] + £(t) (3) 

with m-, = 2Jt/(7 days), where ro is the mean of the ratio variable, r7 is the amplitude of the 

cycle, and cp, is the time during the week when the weekly cycle peaks. The error in the 
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fit is denoted by crt). The time t is measured in days starting from an arbitrary date 

(Tuesday, 1 January 1980, for instance). 

It is perhaps worth reminding the reader here that by fitting the data to a pure 

sinusoid (Equation 3) we are not assuming that this is in fact an exact description of the 

weekly cycle in the data. A periodic signal with period 7 days can always be expressed 

as a sum of sinusoids with periods of 7 days and their higher harmonics. The higher 

harmonics tend to be noisier and harder to estimate from small amounts of data, and we 

have chosen not to examine them. Moreover, because the sinusoid is fit using data from 

all days of the week, the sinusoid makes much better use of the data (with more robust 

statistics) than a search for a weekly cycle that uses only averages of data from single 

days of the week, a practice that is fairly common in searches for weekly cycles in data. 

3.3 Statistical tests for weekly cycle 

By writing r7 COS[107(t l.p,)] C7 COS(107t) + S7 sin(107t) and using linear-least-squares fits 

to this expanded version ofEq. (3) for each week of data, we can use the variance of the 

coefficients C7 and S7 from week to week to estimate the overall uncertainty 07 in the 

amplitude r7, assuming that the correlation of the coefficients from week to week is 

negligible and the number of samples (weeks) for variance estimates is large enough that 

.the coefficients are approximately normally distributed. (Time correlations of the fitted 

amplitudes from week to week were found to be consistent with the assumed correlation 

0.) The ratio (r7/a7i then has a Fisher-Snedecor F distribution with two degrees of 

freedom,in the numerator and the number of weeks in the data series in the denominator. 

Details of this approach can be found in Bell et ai. (2008). The quantity r7/ a7 is used as a 

measure of the signal strength (signal-to-noise ratio). The significance level p of the 
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amplitude r7, under the null hypothesis that there is no weekly cycle, can be calculated 

from this ratio as 

2 P = exp[-(ry /07) ] (4) 

as explained in Bell et al. (2008). For example, this means that the probability p that r7 is 

larger than 1.73 07 is p 0.05. 

Because of the normalization of the observed number n(y,j) by the expected number 

no(y,j) in Eq. (2), the value of ro in (3) obtained by the fitting procedure is typically very 

close to 1. [It is not exactly 1 because the seasonal cycle f(j) is based on an average over 

all years (1980-2009).] 

The statistical significance of the amplitude r7 is estimated both by the method 

described above and by a second method. The second method of estimating the statistical 

significance of the fitted amplitude r7 uses a bootstrap approach in which the original data 

are re-sampled in chunks II-days long in a way that destroys any 7-day periodicity in the 

original data. Chunk sizes of 11 days are used based on the belief that the correlation of 

weekly-cycle fits to the chunks from one chunk to the next is small. Where we have 

checked, it is indeed small. To randomize with respect to the day of the week, chunks 

are selected that are displaced from the original chunk anywhere from 7 days before to 6 

days after the original chunk (i.e., whose starting point is chosen from within a 14-day 

window). We choose chunks from prior or future seasons up to 5 years away, instead of 

confining ourselves to data from the same year, to increase the number of replacement 

choices. Thus, for example, if the chunk we are replacing starts on 10 August 2001, we 

may randomly select a chunk from the original dataset beginning anywhere from August 
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3 to August 16 and from any year from 1996 to 2006. This tends to generate simulated 

datasets with statistics that change with the day of the year in the same way as the 

original dataset, as far as preserving the seasonality of the statistics and decadal trends, 

but having no real weekly cycles. Note that because we have access to years prior to 

1995, we may select random chunks from years as early as 1990 when a chunk from year 

1995 is being replaced. Note that because the statistics of the ratio variable r(y,j) seem to 

be fairly constant from year to year, we create simulated datasets starting with the 

original dataset for r(y,j) rather than of n(y,j) itself, thereby minimizing the impact of 

seasonal and interannual variability on the statistics of the simulated datasets. 

Synthesized datasets assembled from the II-day chunks are used to estimate values 

of r7 for each dataset, and the statistical significance of the value of r7 obtained from the 

original dataset is set at the fraction of synthesized datasets with r7 larger than that of the 

original value. We found that the two methods produced comparable significance levels 

p (the probability that the value of r7 could equal or exceed its value under the null 

hypothesis r7 = 0). 

4. Analysis Results 

In accordance with the hypothesis that the impact of air pollution on invigorating severe 

storms would be greatest in a moist and warm atmosphere, we follow our previous 

geographic partitioning [Bell et ai., 2008 and 2009a],. and examine data for the summer 

months, June-August, and areas east of lOOW for all latitudes within the USA (our 

earlier studies were constrained by the latitudinal coverage of the satellite data we used). 

The longitude of 100W separates the moist air mass to the east, where invigoration can be 
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expected, from the dry air masses to the west, where cloud bases are too high and cold to 

be substantially invigorated by added aerosols. This is evident in the map of climatic 

mean dew point temperature for July, shown in Figure 3a. 

Hail and tornado data are available from 1950, but their quality has evolved over 

time. The completeness of the coverage has been improving, especially for the weaker 

and thus less noticeable events. Observational coverage of tornados seems to have 

stabilized since the mid 1990's, whereas coverage of hail appears to have grown 

continuously (see Figure 1). We have therefore focused our search on the period 1995-

2009. 

A weekly cycle in the aerosol impacts on clouds depends on the existence of a 

weekly cycle in anthropogenic aerosols. Such a cycle is observed clearly in Figure 4, in 

both PMI0 and PM2.5 (particulate matter concentrations for particle diameters greater 

than lO/-lm and 2.5/-lm respectively). The data are collected by the Environmental 

Protection Agency (EPA) and are discussed in Bell et al. [2008]. The weekly cycle of hail 

and tornadic storms for the years 1995-2009, also shown in Figures 4 and 5, behaves very 

similarly to the cycle in the aerosols, with a distinct minimum on weekends. 

The temporal and spatial distribution of the weekly cycle matches the distribution of 

the warm, moist and unstable conditions in which aerosols have the strongest tendency to 

invigorate deep convective clouds [Rosenfeld et al., 2008]. During summer, the longitude 

of 100W coincides with the transition from the moist climate to the east of it to the hot 

and dry climate to the 
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The moisture peaks in the months of June, July and August and reaches the northeast 

USA, but starts to retreat southward during late August and September. The aerosol 

invigoration effect can become apparent in moist atmospheres when synoptic forcing is 

less dominant. In cool base clouds (i.e, temperature of about lOoe or less) the effect 

might even reverse [Roserifeld et al., 2008]. This is in agreement with the spatial and 

temporal distribution of the weekly cycle, as depicted in Figure 6. The figure shows the 

state of the weekly cycle over three latitudinal bands east of lOOW as a function of the 

time of year. Each arrow represents the statistics for a bimonthly period and the years 

1995-2009. The length of the arrow shows the amplitude of the weekly cycle r7 as a 

fraction of the mean rD. The direction indicates the day of the week when the sinusoidal 

fit peaks. The color indicates the significance level p of the fit, reflecting the signal-to­

noise ratio of the fit. The figure shows that the transition from the synoptically forced 

storms in the ---c.c ........ :: ... : .•.....•.•••• : .. ~ ...•.....•.. ~~ ..••..•.•..... : •.•.••.•.. :: •. : .........•..•••.•.•• ~: •• : ...•.•..•.•....•.•. to the more 

locally unstable storms that form in a moist unstable air mass in the summer is 

accompanied by an increase in the weekly cycle modulation tending to have a mid-week 

maximum. The return of the synoptic forcing and not as moist air in the early fall to the 

north part of the domain is similarly associated with a decrease of the weekly cycle there. 

Note that the weekly cycle of tornados only becomes established sometime in June, even 

though tornadic activity is reaching its peak well before then (See Figure 2). The 

consistency of these patterns of occurrence of the weekly cycle in time and space and the 

predictions of the hypothesis that the pollution aerosols are the cause of the observed 

weekly cycle in severe convective storms lend additional credence to the hypothesis. 
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The overall statistical significance of the weekly cycles of tornado and hail activity 

for the IS-year period 1995-2009 is quite high (see caption to Figure 4). We can also 

examine the weekly cycle for individual summers based on sinusoidal fits to the data for 

each summer alone, though the results are noisy given that there are only 13 weeks in a 

summer. The results of such an analysis were displayed in earlier papers as "clock plots" 

for rainfall [Bell et al., 2008] and for lightning [Bell et al., 2009a]: the phase and 

amplitude of sinusoidal fits were used to plot a point on a clock dial running from 

Saturday to Friday and with the distance of the plot point from the center of the plot 

proportional to the" signal-to-noise ratio" of the amplitude. The" noise" 07 is 

determined from the variance of weekly fits to the data. The signal to noise ratio r7/07 is 

given (See Eq. 4) by [-log(P)]112, where p is the significance level of the amplitude r7, i.e., 

the probability that an amplitude this large could have occurred by chance, due to small­

sample effects, when there is in fact no weekly cycle present. 

Despite the small number of samples in each summer of data, it was found [Bell et 

al., 2009a] that the phases of the weekly cycles in lightning activity for summers between 

1998 and 2009 fell year after year in the non-weekend sectors of the clock plot. This 

strongly suggests that the weekly cycle in the data has a period of exactly 7 days and is 

not an atmospheric wave with a period "in the neighborhood" of 7 days. Because tornado 

and hail events are not nearly as numerous as lightning events, and the tornadolhail 

observational coverage not nearly as dense, we would expect the year-by-year clock plots 

of hail and tornado weekly cycles to be noisier than for lightning. The clock plots for hail 

and tornados are shown in Figure,Z. They cover the years 1995-2009. In order to 

maximize the weekly cycle signal, only data from the afternoons (1200-2400 local solar 
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time), when convective instability is highest, are used in these plots. Though the phases 

do not avoid the weekend sectors as completely as the lightning weekly-cycle phases did, 

there is still a clear tendency for the weekly cycles of hail storms and tornados to peak in 

the middle of the week. When the phase falls on weekends, the signal-to-noise ratio is 

quite low, implying that the statistical uncertainty in the determination of the phase is 

large. Note that the hail data contain about 7 times as many events as the tornado data 

and therefore have more stable statistics, and the phases are more consistent in avoiding 

the weekend sectors (Figure 7a). 

4.2. Results for tornados west of 100W 

not expect to find then: evidence of 

weekly storm invigoratiol\. ~Y€!I1!h()llgh!h€!r€!is(lpr()n()tll1c:e4w€!eklycycle il1 (ler()§()ls ... 

measured by ground-based EPA stations west of 100W (Figure 8), no significant weekly 

cycle is apparent to the west of 100W (Figure 9). 

5. Discussion 

The results are in agreement with our previous reports of similar weekly cycles in the 

rainfall [Bell et al., 2008] and lightning [Bell et al., 2009a] over the USA. The cycle was 

ascribed there to aerosols invigorating deep convective clouds in a warm, moist 

atmosphere. It is therefore not too surprising to find that the invigorated clouds also 

produce more hail and tornados. 

We show in Figure9~Jhat the hail and tornado data are consistent with earlier results 

for rain and lightning at the SE U.S. in another respect: when the phase cj>-, and signal 
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strength r7 for each summer of data for the years 1995-2009 are displayed on a "clock 

plot", there is a clear tendency for the phases to avoid the weekend period, despite the 

fact that there are only 13 weeks of data in a single summer and estimates of the weekly 

cycle are quite noisy. It is not surprising that the avoidance is not as clear as it was for 

the lightning data [Bell et al., 2009a], since lightning occurs far more frequently than hail 

storms and tornados and the effective sample size for lightning is far larger. 

It is conceivable that the storm data could be affected by a weekly bias in the 

observations of storms. However, it is shown in Figures!'~il:il:l1~y)Jthil:tl1()sigl1()fil: 

statistically significant weekly cycle in tornado or hail occurrence is visible in the data 

west of lOOW. If there is a weekly-varying bias in storm reports it would have to be 

present in the eastern half of the U.S. and absent in the western half to explain our results. 

Furthermore, the weekly cycle from March to May over the eastern USA (see Figure 6), 

is not statistically significant, and no longer point~;ft()allli~:--\V~ek111il:)(ill1111l1~Ifil:l1ythil1g1 

it is pointing more towards the weekend, but without any statistical significance. The 

signal is too weak to support the possibility of reversal in the convective invigoration 

effect in cool base clouds, as hypothesized by Rosenfeld et al. [2008]. The lack of a clear 

weekly cycle in the spring along with its existence in the summer, plus the clear 

correspondence of the weekly cycle we see in the summer storm data with the cycles 

observed in other variables with no possible weekly-varying observational bias, suggests 

that the weekly cycle in storms is a real one and not an artifact of the data collection 

methods. 

The weekly cycle we see is firmly pegged to the work week. It is not plausible that it 

is a reflection of a quasi-periodic 7-day cycle in atmospheric dynamics, whose phase 
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would surely wander from year to year something we do not see in any ofthe clock 

plots. Kim et al. [2010] recently raised the possibility that the weekly cycle can occur 

due to natural random variability [Kim et al., 2010]. This might be the case for a weekly 

cycle that is found in general upper tropospheric synoptic features that have no clear 

hypothesis to the way that they might be linked to anthropogenic effects [Stinov, 2010]. 

However, this is not likely to be the case here, based on the lack of evidence of a weekly 

cycle in the synoptic properties that correlate with lightning activity that was presented in 

the supporting online materials of Bell et al. [2009a]. Previous reports of a weekly cycle 

of hail in Southern France [Dessens et al., 2001] did not show a change in hail frequency, 

but showed a larger kinetic energy of the hailstones oli weekends. It was postulated that 

ice forming nuclei (IFN) emitted during the weekend from the local industry was creating 

larger number of ice hydro meteors and therefore decreasing the hailstone sizes due to 

greater competition on the available supercooled water. There is no information whether 

IFN have a weekly cycle in the eastern USA. 

This study has shown a clear relation between the weekly cycle of anthropogenic 

aerosols and the occurrences of severe convective storms, which is very unlikely to be a 

result of natural variability. The observed associations cannot serve as proof for causality. 

However, the results are consistent with the hypothesis that air pollution aerosols 

invigorate deep convective clouds in moist and unstable atmosphere, and the possibility 

that they can even induce the storms to produce large hail and tornados. Therefore, these 

results support this hypothesis. It is worth pointing out that if a roughly 10% weekly 

variation in pollution levels is resulting in a simi~ar change in severe storm activity, then 

the "background" aerosol level, which is elevated with respect to the pre-industrial level 
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even during weekends, is also likely to be changing the storm frequency we experience 

today. 
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Figure Number of tornado and hailstorm events each summer (Jun-Aug) for 1980-
2009. Graphs are shown for tornados classified as FO and as F2 in strength, and for 
hailstorms with reported hail diameters of 0.75 inches, and between 1 and 1.75 inches 
(exclusive). Because hail diameters are generally given in 0.25-inch increments, this bin 
includes mostly hail diameters of 1.25 and 1.5 inches. 
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Average Number Tornados/Day, 1980-2009, East of 100W 
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Figure 2: Average number of tornados per day (solid circles), all strengths, for years 
1980-2009. Smooth red curve shows fit to data using Lee filter, as described in the text, 
and was used by us as the expected tornado count for days of the year. It is denoted by 
10) in the text. 
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Figure 1: A weekly cycle of the aerosols (PM2.5 and PMIO), as measured by the EPA 

over the USA during JJA of 1998-2005 to the east of 100W, along with the associated 

weekly cycle of the SPC-reported hail storms and tornados over the same area averaged 

over JJA for 1995-2009. The significance levelp for the weekly cycle of tornados is p =, 

0.011 (F-test) and p 0.033 (bootstrap test). The significance level for the hail data is p 

= 0.00013 (F-test) and p = 0.0008 (bootstrap test with 104 simulated datasets). 
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Figure Daily averages for hail occurrences of various strengths (hail diameters) are 

shown, using data for hail storms east of lOOW for June-August, 1995-2009. 
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Figure. Daily averages for tornado occurrences of various strengths (F values) are 

shown, using data for tornados east of 100W for June-August, 1995-2009. 
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Hail 1995-2009 
Feb Mar Aug Sep Oct 

Figure 6: The dependence of the phase of the weekly cycle in hail (a) and tomadic (b) 

storms on the time of year and geographical latitude to the east of lOOW. Each arrow 

represents averages of the two months to either side of its location. The latitudes 

contributing to each row of statistics are shown to the left of the figure. The direction of 

the arrow points to the day of the week when the sinusoidal fit is a maximum, and the 

length indicates the weekly amplitude as a fraction of the bimonthly mean, according to 
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the key at the bottom left of the figures. The radius of the outermost circle in the key 

represents a fractional anomaly of 0.15. The arrows are colored according to their 

significance level, with the color_bar below indicating the significance level assigned to 

each color. 
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Hail Weekly Cycle 
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Figure 7: The phase (day of the week) and amplitude of the weekly cycle (Eq. 1) of data 

for each summer for the years 1995-2009. The amplitude is represented by the distance 

from the origin and is proportional to the signal-to-noise ratio of the amplitude, r7/a;. 

The last two digits of the year are shown in the colored balloons. The probability p that 

the amplitude of the weekly cycle could exceed a given radius, under the null hypothesis 

r7 0, is shown by the circles labeled by the corresponding value ofp. (a) Hail data. (b) 

Tornado data. 
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Figure 8. Weekly cycle of the aerosol concentrations (PM2.5 and PMIO), as measured by 

the EPA over the USA during JJ A of 1998-2005 to the west of 1 OOW. Daily averages 

are expressed as fractional anomalies relative to the overall means. 
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Figure 9a. Daily averages for hailstorm occurrences of various strengths (hail diameters) 

are shown, using data for hail storms west of lOOW in JJA and for 1995-2009. The 

weekly cycles are not statistically significant. 
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Figure 9b. Daily averages for tornado occurrences of various strengths (EF values) are 

shown, using data for tornados west of lOOW in JJA and for 1995-2009. The weekly 

cycles are not statistically significant. 
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