104 research outputs found

    Targeted Magnetic Intra-Lysosomal Hyperthermia produces lysosomal reactive oxygen species and causes Caspase-1 dependent cell death

    Get PDF
    Therapeutic strategies using drugs which cause Lysosomal Cell Death have been proposed for eradication of resistant cancer cells. In this context, nanotherapy based on Magnetic Intra-Lysosomal Hyperthermia (MILH) generated by magnetic nanoparticles (MNPs) that are grafted with ligands of receptors overexpressed in tumors appears to be a very promising therapeutic option. However, mechanisms whereby MILH induces cell death are still elusive. Herein, using Gastrin-grafted MNPs specifically delivered to lysosomes of tumor cells from different cancers, we provide evidences that MILH causes cell death through a non-apoptotic signaling pathway. The mechanism of cell death involves a local temperature elevation at the nanoparticle periphery which enhances the production of reactive oxygen species through the lysosomal Fenton reaction. Subsequently, MILH induces lipid peroxidation, lysosomal membrane permeabilization and leakage of lysosomal enzymes into the cytosol, including Cathepsin-B which activates Caspase-1 but not apoptotic Caspase-3. These data highlight the clear potential of MILH for the eradication of tumors overexpressing receptors

    Targeting a G-Protein-Coupled Receptor Overexpressed in Endocrine Tumors by Magnetic Nanoparticles To Induce Cell Death

    Get PDF
    Nanotherapy using targeted magnetic nanoparticles grafted with peptidic ligands of receptors overexpressed in cancers is a promising therapeutic strategy. However, nanoconjugation of peptides can dramatically affect their properties with respect to receptor recognition, mechanism of internalization, intracellular trafficking, and fate. Furthermore, investigations are needed to better understand the mechanism whereby application of an alternating magnetic field to cells containing targeted nanoparticles induces cell death. Here, we designed a nanoplatform (termed MG-IONP-DY647) composed of an iron oxide nanocrystal decorated with a ligand of a G-protein coupled receptor, the cholecystokinin-2 receptor (CCK2R) that is overexpressed in several malignant cancers. MG-IONP-DY647 did not stimulate inflammasome of Raw 264.7 macrophages. They recognized cells expressing CCK2R with a high specificity, subsequently internalized via a mechanism involving recruitment of β-arrestins, clathrin-coated pits, and dynamin and were directed to lysosomes. Binding and internalization of MG-IONP-DY647 were dependent on the density of the ligand at the nanoparticle surface and were slowed down relative to free ligand. Trafficking of CCK2R internalized with the nanoparticles was slightly modified relative to CCK2R internalized in response to free ligand. Application of an alternating magnetic field to cells containing MG-IONP-DY647 induced apoptosis and cell death through a lysosomal death pathway, demonstrating that cell death is triggered even though nanoparticles of low thermal power are internalized in minute amounts by the cells. Together with pioneer findings using iron oxide nanoparticles targeting tumoral cells expressing epidermal growth factor receptor, these data represent a solid basis for future studies aiming at establishing the proof-of-concept of nanotherapy of cancers using ligand-grafted magnetic nanoparticles specifically internalized via cell surface receptors

    Cholecystokinin B Receptor from Human Jurkat Lymphoblastic T Cells Is Involved in Activator Protein-1-Responsive Gene Activation

    Get PDF
    SUMMARY The aim of this study was to analyze the role of cholecystokinin (CCK B ) receptor in human lymphoblastic Jurkat T cells. We investigated the trophic effect resulting from activation of such a receptor by using the reporter gene strategy. For this purpose, we transiently transfected Jurkat T cells with the reporter plasmid p[(TRE)3-tk-Luc] and found that CCK-8 was able to dose-dependently induce luciferase expression related to activator protein-1 (AP-1) activation with a maximal response identical to that obtained with compounds known to activate AP-1 complex (quantitatively, the same level of induction was obtained with 1 nM 12-O-tetradecanoylphorbol-13-acetate, 100 M diacylglycerol, or 4 nM epidermal growth factor). The involvement of the CCK B receptor in such a stimulation was demonstrated by the inhibiting effect of the selective CCK B receptor antagonist 158. This effect was confirmed in COS-7 cells transfected with the cDNA of CCK B receptor cloned from Jurkat T cells. To better understand the AP-1-dependent luciferase expression in Jurkat T cells, we tested two specific inhibitors of serine/threonine phosphatases-1 and -2A: okadaic acid and calyculin A. These compounds strongly increased the phorbol-12-myristate-13-acetate response, whereas we have not observed a contribution of phosphatase inhibitors on a CCK-8-induced luciferase activity. To confirm that CCK B receptors are involved in AP-1 response, we investigated the CCK-8 effect on interleukin-2 expression, a natural endogenous gene regulated by several factors, including AP-1. In Jurkat T cells activated by phorbol-12-myristate-13-acetate and phytohemagglutinin, CCK-8 induced IL-2 expression. This induction was abolished by PD-135,158. Our results indicate that CCK-8 exerts a trophic effect in Jurkat T cells through stimulation of CCK B receptors by modulation of expression of AP-1-regulated genes. Several studies have shown that various gastrointestinal peptides may be involved in the control of proliferation of various tissues and neoplastic cells (1). For example, CCK was shown to increase growth of tumors in nude mice bearing transplanted pancreatic cancer tissues (2). CCK is also known to increase the number of animals developing nitrosamine-induced pancreatic cancers (3), and CCK was shown to increase the rate of growth of cultured pancreatic cancer cells (2). Similar observations were described for bombesin/ gastrin-releasing peptide in human glioblastoma in vitro and in vivo in small-cell lung carcinoma, prostatic, mammary, and pancreatic cancer cell lines (1). In addition, gastrointestinal peptides can function as autocrine growth factors in neoplastic tissues as shown for bombesin/gastrin-releasing peptide in small-cell lung carcinoma cells, for gastrin an

    Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms

    Get PDF
    While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition and predatory ecology. Venom composition was shown to be highly variable across the 20 species of Heloderma, Lanthanotus, and Varanus included in our study. While kallikrein enzymes were ubiquitous, they were also a particularly multifunctional toxin type, with differential activities on enzyme substrates and also ability to degrade alpha or beta chains of fibrinogen that reflects structural variability. Examination of other toxin types also revealed similar variability in their presence and activity levels. The high level of venom chemistry variation in varanid lizards compared to that of helodermatid lizards suggests that venom may be subject to different selection pressures in these two families. These results not only contribute to our understanding of venom evolution but also reveal anguimorph lizard venoms to be rich sources of novel bioactive molecules with potential as drug design and development lead compounds

    Mécanismes de l'internalisation du récepteur CCK2 (bases pharmacologiques et structurales)

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF

    Signalisation endosomale du récepteur du peptide insulinotrope dépendant du glucose (GIP)

    No full text
    Les récepteurs couplés aux protéines G (RCPG) représentent la plus grande famille de récepteurs membranaires. Classiquement, il était admis que la signalisation des RCPG, résultant de leur couplage aux protéines G, provenait exclusivement du pool de récepteurs présents à la surface cellulaire et, qu’une fois internalisés, les RCPG devenaient « silencieux ». À l’heure actuelle, il existe des preuves expérimentales montrant que des RCPG internalisés continuent à produire un signal via les protéines G. Dans notre travail, nous avons démontré, qu’une fois internalisé et présent dans la membrane des endosomes précoces, le récepteur du peptide insulinotrope dépendant du glucose (RGIP) continue de stimuler la production d’AMPc et d’activer la protéine kinase-A (PKA). En plus de preuves indirectes montrant que les cinétiques de production d’AMPc et d’activation de la PKA sont dépendantes de l’internalisation du RGIP et de son trafic intracellulaire, nous avons identifié la forme active de Gαs dans les endosomes précoces contenant le RGIP et détecté un signal au moyen d’une sonde par RET d’AMPc démontrant une production d’AMPc à la surface des endosomes contenant le GIP
    • …
    corecore