12 research outputs found

    Cholinergic modulation of the mesostriatal pathway

    Full text link
    Cholinergic neurotransmission exerts widespread modulation of brain function. The focus of my thesis is to detail the neurophysiological and behavioural function of acetylcholine in the striatum and the dopaminergic midbrain. Using ChAT::cre Long Evans rats I investigate the direct and the indirect connectivity between brainstem and striatum. Using anatomical, electrophysiological and behavioural experiments, I describe a direct projection to the striatum arising from the cholinergic brainstem and also an indirect pathway through the dopaminergic midbrain. I describe anatomical and physiological differences in the modulation of dopaminergic midbrain neurons by cholinergic neurons in the pedunculopontine and the laterodorsal tegmental nucleus. I also show a novel cholinergic pathway to the striatum arising from the brainstem. Based on anatomical, physiological and behavioural results, I show a strong functional modulation of striatum by cholinergic transmission

    Altered cortico-striatal crosstalk underlies object recognition memory deficits in the sub-chronic phencyclidine model of schizophrenia

    Get PDF
    The neural mechanisms underlying cognitive deficits in schizophrenia are poorly understood. Sub-chronic treatment with the NMDA antagonist phencyclidine (PCP) produces cognitive abnormalities in rodents that reliably model aspects of the neurocognitive alterations observed in schizophrenia. Given that network activity across regions encompassing medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) plays a significant role in motivational and cognitive tasks, we measured activity across cortico-striatal pathways in PCP-treated rats to characterize neural enabling and encoding of task performance in a novel object recognition task. We found that PCP treatment impaired task performance and concurrently (1) reduced tonic NAc neuronal activity, (2) desynchronized cross-activation of mPFC and NAc neurons, and (3) prevented the increase in mPFC and NAc neural activity associated with the exploration of a novel object in relation to a familiar object. Taken together, these observations reveal key neuronal and network-level adaptations underlying PCP-induced cognitive deficits, which may contribute to the emergence of cognitive abnormalities in schizophrenia

    A concurrent excitation and inhibition of dopaminergic subpopulations in response to nicotine

    No full text
    International audienceMidbrain dopamine (DA) neurons are key players in motivation and reward processing. Increased DA release is thought to be central in the initiation of drug addiction. Whereas dopamine neurons are generally considered to be activated by drugs such as nicotine, we report here that nicotine not only induces excitation of ventral tegmental area (VTA) DA cells but also induces inhibition of a subset of VTA DA neurons that are anatomically segregated in the medial part of the VTA. These opposite responses do not correlate with the inhibition and excitation induced by noxious stimuli. We show that this inhibition requires D2 receptor (D2-R) activation, suggesting that a dopaminergic release is involved in the mechanism. Our findings suggest a principle of concurrent excitation and inhibition of VTA DA cells in response to nicotine. It promotes unexplored roles for DA release in addiction contrasting with the classical views of reinforcement and motivation, and give rise to a new interpretation of the mode of operation of the reward system

    A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem

    Full text link
    Cholinergic transmission in the striatal complex is critical for the modulation of the activity of local microcircuits and dopamine release. Release of acetylcholine has been considered to originate exclusively from a subtype of striatal interneuron that provides widespread innervation of the striatum. Cholinergic neurons of the pedunculopontine (PPN) and laterodorsal tegmental (LDT) nuclei indirectly influence the activity of the dorsal striatum and nucleus accumbens through their innervation of dopamine and thalamic neurons, which in turn converge at the same striatal levels. Here we show that cholinergic neurons in the brainstem also provide a direct innervation of the striatal complex. By the expression of fluorescent proteins in choline acetyltransferase (ChAT)::Cre+ transgenic rats, we selectively labeled cholinergic neurons in the rostral PPN, caudal PPN, and LDT. We show that cholinergic neurons topographically innervate wide areas of the striatal complex: rostral PPN preferentially innervates the dorsolateral striatum, and LDT preferentially innervates the medial striatum and nucleus accumbens core in which they principally form asymmetric synapses. Retrograde labeling combined with immunohistochemistry in wild-type rats confirmed the topography and cholinergic nature of the projection. Furthermore, transynaptic gene activation and conventional double retrograde labeling suggest that LDT neurons that innervate the nucleus accumbens also send collaterals to the thalamus and the dopaminergic midbrain, thus providing both direct and indirect projections, to the striatal complex. The differential activity of cholinergic interneurons and cholinergic neurons of the brainstem during reward-related paradigms suggest that the two systems play different but complementary roles in the processing of information in the striatum

    Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies

    Get PDF
    Assimilation of novel strategies into a consolidated action repertoire is a crucial function for behavioral adaptation and cognitive flexibility. Acetylcholine in the striatum plays a pivotal role in such adaptation, and its release has been causally associated with the activity of cholinergic interneurons. Here we show that the midbrain, a previously unknown source of acetylcholine in the striatum, is a major contributor to cholinergic transmission in the striatal complex. Neurons of the pedunculopontine and laterodorsal tegmental nuclei synapse with striatal cholinergic interneurons and give rise to excitatory responses. Furthermore, they produce uniform inhibition of spiny projection neurons. Inhibition of acetylcholine release from midbrain terminals in the striatum impairs the association of contingencies and the formation of habits in an instrumental task, and mimics the effects observed following inhibition of acetylcholine release from striatal cholinergic interneurons. These results suggest the existence of two hierarchically-organized modes of cholinergic transmission in the striatum, where cholinergic interneurons are modulated by cholinergic neurons of the midbrain

    Segregated cholinergic transmission in the ventral tegmental area

    No full text
    Abstract Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures associated with either movement or reward. While cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. Here we used optogenetic methods combined with in vivo juxtacellular recording and labeling to dissect the influence of brainstem cholinergic innervation of distinct subpopulations of neurons in the VTA. We found that LDT cholinergic axons selectively enhance the bursting activity of mesolimbic dopamine neurons that are excited by aversive stimulation. In contrast, PPN cholinergic axons activate and change the discharge properties of VTA neurons that are integrated in distinct functional circuits and are inhibited by aversive stimulation. While both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate neurons involved in different reward circuits.

    Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies

    Get PDF
    Assimilation of novel strategies into a consolidated action repertoire is a crucial function for behavioral adaptation and cognitive flexibility. Acetylcholine in the striatum plays a pivotal role in such adaptation, and its release has been causally associated with the activity of cholinergic interneurons. Here we show that the midbrain, a previously unknown source of acetylcholine in the striatum, is a major contributor to cholinergic transmission in the striatal complex. Neurons of the pedunculopontine and laterodorsal tegmental nuclei synapse with striatal cholinergic interneurons and give rise to excitatory responses. Furthermore, they produce uniform inhibition of spiny projection neurons. Inhibition of acetylcholine release from midbrain terminals in the striatum impairs the association of contingencies and the formation of habits in an instrumental task, and mimics the effects observed following inhibition of acetylcholine release from striatal cholinergic interneurons. These results suggest the existence of two hierarchically-organized modes of cholinergic transmission in the striatum, where cholinergic interneurons are modulated by cholinergic neurons of the midbrain

    Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits.

    Full text link
    Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures that are associated with either movement or reward. Whereas cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. We used optogenetics and in vivo juxtacellular recording and labeling to examine the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhanced the bursting activity of mesolimbic dopamine neurons that were excited by aversive stimulation. In contrast, PPN cholinergic axons activated and changed the discharge properties of VTA neurons that were integrated in distinct functional circuits and were inhibited by aversive stimulation. Although both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate the neurons involved in different reward circuits
    corecore