10,116 research outputs found

    The Orion constellation as an installation - An innovative three dimensional teaching and learning environment

    Full text link
    Visualising the three dimensional distribution of stars within a constellation is highly challenging for both students and educators, but when carried out in an interactive collaborative way it can create an ideal environment to explore common misconceptions about size and scale within astronomy. We present how the common table top activities based upon the Orion constellation miss out on this opportunity. Transformed into a walk-through Orion installation that includes the position of our Solar system, it allows the students to fully immerse themselves within the model and experience parallax. It enables participants to explore within the installation many other aspects of astronomy relating to sky culture, stellar evolution, and stellar timescales establishing an innovative learning and teaching environment.Comment: 2 pages, submitted to The Physics Teacher - Colum

    Broadband sensitivity enhancement of detuned dual-recycled Michelson interferometers with EPR entanglement

    Get PDF
    We demonstrate the applicability of the EPR entanglement squeezing scheme for enhancing the shot-noise-limited sensitivity of a detuned dual-recycled Michelson interferometers. In particular, this scheme is applied to the GEO\,600 interferometer. The effect of losses throughout the interferometer, arm length asymmetries, and imperfect separation of the signal and idler beams are considered

    Multi-spatial-mode effects in squeezed-light-enhanced interferometric gravitational wave detectors

    Get PDF
    Proposed near-future upgrades of the current advanced interferometric gravitational wave detectors include the usage of frequency dependent squeezed light to reduce the current sensitivity-limiting quantum noise. We quantify and describe the degradation effects that spatial mode-mismatches between optical resonators have on the squeezed field. These mode-mismatches can to first order be described by scattering of light into second-order Gaussian modes. As a demonstration of principle, we also show that squeezing the second-order Hermite-Gaussian modes HG02\mathrm{HG}_{02} and HG20\mathrm{HG}_{20}, in addition to the fundamental mode, has the potential to increase the robustness to spatial mode-mismatches. This scheme, however, requires independently optimized squeeze angles for each squeezed spatial mode, which would be challenging to realise in practise.Comment: 10 pages, 12 figure

    Duration judgements in patients with schizophrenia

    Get PDF
    Background. The ability to encode time cues underlies many cognitive processes. In the light of schizophrenic patients' compromised cognitive abilities in a variety of domains, it is noteworthy that there are numerous reports of these patients displaying impaired timing abilities. However, the timing intervals that patients have been evaluated on in prior studies vary considerably in magnitude (e.g. 1 s, 1 min, 1 h etc.). Method. In order to obviate differences in abilities in chronometric counting and place minimal demands on cognitive processing, we chose tasks that involve making judgements about brief durations of time (<1 s). Results. On a temporal generalization task, patients were less accurate than controls at recognizing a standard duration. The performance of patients was also significantly different from controls on a temporal bisection task, in which participants categorized durations as short or long. Although time estimation may be closely intertwined with working memory, patients' working memory as measured by the digit span task did not correlate significantly with their performance on the duration judgement tasks. Moreover, lowered intelligence scores could not completely account for the findings. Conclusions. We take these results to suggest that patients with schizophrenia are less accurate at estimating brief time periods. These deficits may reflect dysfunction of biopsychological timing processes

    A heuristic for the distribution of point counts for random curves over a finite field

    Full text link
    How many rational points are there on a random algebraic curve of large genus gg over a given finite field Fq\mathbb{F}_q? We propose a heuristic for this question motivated by a (now proven) conjecture of Mumford on the cohomology of moduli spaces of curves; this heuristic suggests a Poisson distribution with mean q+1+1/(q1)q+1+1/(q-1). We prove a weaker version of this statement in which gg and qq tend to infinity, with qq much larger than gg.Comment: 16 pages; v2: refereed version, Philosophical Transactions of the Royal Society A 201

    Fundamental Limitations of Cavity-assisted Atom Interferometry

    Get PDF
    Atom interferometers employing optical cavities to enhance the beam splitter pulses promise significant advances in science and technology, notably for future gravitational wave detectors. Long cavities, on the scale of hundreds of meters, have been proposed in experiments aiming to observe gravitational waves with frequencies below 1 Hz, where laser interferometers, such as LIGO, have poor sensitivity. Alternatively, short cavities have also been proposed for enhancing the sensitivity of more portable atom interferometers. We explore the fundamental limitations of two-mirror cavities for atomic beam splitting, and establish upper bounds on the temperature of the atomic ensemble as a function of cavity length and three design parameters: the cavity g-factor, the bandwidth, and the optical suppression factor of the first and second order spatial modes. A lower bound to the cavity bandwidth is found which avoids elongation of the interaction time and maximizes power enhancement. An upper limit to cavity length is found for symmetric two-mirror cavities, restricting the practicality of long baseline detectors. For shorter cavities, an upper limit on the beam size was derived from the geometrical stability of the cavity. These findings aim to aid the design of current and future cavity-assisted atom interferometers.Comment: 11 pages, 12 figure

    Climate change and the Delta, San Francisco Estuary and Watershed Science

    Get PDF
    Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful preparation for the coming changes will require greater integration of monitoring, modeling, and decision making across time, variables, and space than has been historically normal

    Telemedicine and Healthcare Implications for Central Virginia: A Systematic Review of the Literature

    Get PDF
    Background: Uncertainties and challenges associated with COVID-19 have affected the efficient delivery of health care in Central Virginia. Integrating and redesigning health systems could boost the quality and efficiency of care delivery. Telemedicine has been suggested as a viable solution to increase virtual access to patient advocacy healthcare education and training programs and has the potential to help facilitate the delivery of health services to rural and remote areas. It is projected that access to quality telehealth services can minimize the need for in-person hospital visitation amid the pandemic. The innovation also facilitates remote assessment of patients and monitoring of patient illness and treatment. For the rural population at risk of COVID-19 or any easily transmissible infection, telemedicine can provide convenient access to routine care without provider-patient contact, thus limiting the spread of the virus. Methods: A systematic literature review of peer-reviewed and grey literature was conducted. The authors used electronic databases including Embase, PubMed, CINAHIL and Web of Science to locate and access relevant articles based on their inclusion criteria. Studies were selected that investigated the implementation of telemedicine in the clinical and educational healthcare settings in rural or remote locations within the United States. Forty articles were identified for review. The identified articles were published between 2010 and 2021 that were used in the study. Results: There was no significant literature on telemedicine utilization in the Commonwealth of Virginia. Additionally, there were limited studies on rural and remote settings that utilized telehealth services during the COVID-19 pandemic. Evidence suggested that telemedicine could improve access to healthcare services and enable providers to monitor patients from a distance. Researchers identified six key factors associated with telemedicine\u27s success and sustainability: education, training, vision, ownership, adaptability, economics, efficiency, and equipment. Conclusions: Rural and remote communities experience healthcare disparities and poor patient outcomes due to limited access to quality care and inequalities in education, training, and resource allocation. A deficiency of technological skills, knowledge and or resistance to change may prevent a quality telehealth program from being able to serve patients adequately

    Cutting Edge : Failure of Antigen-Specific CD4+ T Cell Recruitment to the Kidney during Systemic Candidiasis

    Get PDF
    Copyright © 2014 The Authors. Acknowledgments We thank E. Bolton and H. Bagavant for reagents and advice. We also acknowledge the staff of the Medical Research Facility at the University of Aberdeen for care of the animals used in this study. This work was supported by the Medical Research Council and the Wellcome Trust.Peer reviewedPublisher PD

    Simultaneous interplanetary scintillation and Heliospheric Imager observations of a coronal mass ejection

    Get PDF
    We describe simultaneous Interplanetary Scintillation (IPS) and STEREO Heliospheric Imager (HI) observations of a coronal mass ejection (CME) on 16 May 2007. Strong CME signatures were present throughout the IPS observation. The IPS raypath lay within the field-of-view of HI-1 on STEREO-A and comparison of the observations shows that the IPS measurements came from a region within a faint CME front observed by HI-1A. This front may represent the merging of two converging CMEs. Plane-of-sky velocity estimates based on time-height plots of the two converging CME structures were 325 kms?1 and 550 kms?1 for the leading and trailing fronts respectively. The plane-of-sky velocities determined from IPS ranged from 420 ± 10 kms?1 to 520 ± 20 kms?1. IPS results reveal the presence of micro-structure within the CME front which may represent interaction between the two separate CME events. This is the first time that it has been possible to interpret IPS observations of small-scale structure within an interplanetary CME in terms of the global structure of the event
    corecore