9 research outputs found

    T-cell activation marker sCD27 is associated with clinically definite multiple sclerosis in childhood-acquired demyelinating syndromes

    Get PDF
    Background: Cerebrospinal fluid (CSF) levels of T-cell activation marker soluble CD27 (sCD27) are associated with subsequent disease activity after a first attack of suspected MS in adults. The predictive value for disease course in children with acquired demyelinating syndromes (ADS) is unknown. Objectives: To assess the predictive value of sCD27 levels for clinically definite multiple sclerosis (CDMS) diagnosis in childhood ADS. Methods: Children <18 years with a first demyelinating event were prospectively included and followed. Soluble CD27 was determined in CSF using an enzyme-linked immunosorbent assay (ELISA). Cox regression analyses were used to calculate hazard ratios (HRs) for CDMS. Results: A total of 94 ADS children were included (ADS with encephalopathy (ADS+) n = 33 and ADS without encephalopathy (ADS–) n = 61). Of the 61 ADS– children, 21 (48%) were diagnosed with CDMS during follow-up. At baseline, sCD27 levels were higher in patients with a future CDMS diagnosis (n = 29) than in monophasic ADS+ (n = 30), monophasic ADS– (n = 28) and relapsing non-MS patients (n = 7; p < 0.001). In ADS– patients, sCD27 was associated with CDMS (HR = 1.8 per 100 U/mL increase in sCD27 levels, p = 0.031), after adjustments for age, oligoclonal bands and the presence of dissemination in space on baseline magnetic resonance imaging (MRI). Conclusion: CSF sCD27 levels at first attack of demyelination were associated with CDMS diagnosis in children. This makes sCD27 a potential clinically relevant quantitative marker when performing routine CSF diagnostics

    HLA association in MOG-IgG- and AQP4-IgG-related disorders of the CNS in the Dutch population

    Get PDF
    OBJECTIVE: To investigate the possible human leukocyte antigen (HLA) association of both myelin oligodendrocyte glycoprotein (MOG-IgG)-associated diseases (MOGAD) and aquaporin-4 antibody (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (NMOSDs) in the Dutch population with European ancestry to clarify similarities or differences in the immunogenetic background of both diseases. METHODS: Blood samples from patients in the Dutch national MS/NMOSD expert clinic were tested for MOG-IgG and AQP4-IgG using a cell-based assay. HLA Class I and II genotyping was performed in 43 MOG-IgG-seropositive and 42 AQP4-IgG-seropositive Dutch patients with European ancestry and compared with those of 5,604 Dutch healthy blood donors. RESULTS: No significant HLA association was found in MOG-IgG-seropositive patients. The AQP4-IgG-seropositive patients had a significant higher frequency of HLA-A*01 (61.9% vs 33.7%, OR 3.16, 95% CI, 1.707-5.863, p after correction [pc] = 0.0045), HLA-B*08 (61.9% vs 25.6%, OR 4.66, 95% CI, 2.513-8.643, pc < 0.0001), and HLA-DRB1*03 (51.2% vs 27.6%, OR 2.75, 95% CI, 1.495-5.042, pc = 0.0199) compared with controls. CONCLUSIONS: The present study demonstrates differences in the immunogenetic background of MOGAD and AQP4-IgG-positive NMOSD. The strong positive association with HLA-A*01, -B*08, and -DRB1*03 is suggestive of a role of this haplotype in the etiology of AQP4-IgG-positive NMOSD in patients with European ancestry, whereas in MOGAD no evidence was found for any HLA association in these disorders

    The incidence of traumatic brain injury in young people in the catchment area of the University Hospital Rotterdam,The Netherlands

    No full text
    Background: Traumatic brain injury (TBI) is in the developed countries the most common cause of death and disability in childhood. Aim: The purpose of this study is to estimate the incidence of TBI for children and young people in an urbanised region of the Netherlands and to describe relevant characteristics of this group. Methods: Patients, aged 1 month - 24 years who presented with traumatic brain injury at the Erasmus University Hospital (including the Sophia Children's Hospital) in 2007 and 2008 were included in a retrospective study. Data were collected by means of diagnosis codes and search terms for TBI in patient records. The incidence of TBI in the different referral areas of the hospital for standard, specialised and intensive patient care was estimated. Results: 472 patients met the inclusion criteria. The severity of the Injury was classified as mild in 342 patients, moderate in 50 patients and severe in 80 patients. The total incidence of traumatic brain injury in the referral area of the Erasmus University Hospital was estimated at 113.9 young people per 100.000. The incidence for mild traumatic brain injury was estimated at 104.4 young people, for moderate 6.1 and for severe 3.4 young people per 100.000. Conclusion: The ratio for mild, moderate and severe traumatic brain injury in children and young people was 33.7e1.8e1.In the mild TBI group almost 17% of the patients reported sequelae. The finding that 42% of them had a normal brain CT scan at admission underwrites the necessity of careful follow up of children and young people with mild TBI

    Naive B cells in neuromyelitis optica spectrum disorders: impact of steroid use and relapses

    No full text
    Neuromyelitis optica spectrum disorders are a group of rare, but severe autoimmune diseases characterized by inflammation of the optic nerve(s) and/or spinal cord. Although naive B cells are considered key players by escaping central tolerance checkpoints, it remains unclear how their composition and outgrowth differ in patients with neuromyelitis optica spectrum disorders. Under complete treatment-naive circumstances, we found that naive mature/transitional B-cell ratios were reduced in the blood of 10 patients with aquaporin-4 immunoglobulin G-positive disease (neuromyelitis optica spectrum disorders) as compared to 11 both age- and gender-matched healthy controls, eight patients with myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disorders and 10 patients with multiple sclerosis. This was the result of increased proportions of transitional B cells, which were the highest in patients with neuromyelitis optica spectrum disorders with relapses and strongly diminished in a separate group of nine patients with neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disorders who received corticosteroid treatment. These findings need to be confirmed in longitudinal studies. For purified naive mature B cells of seven patients with neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disorders with relapses, Toll-like receptor 9 ligand synergized with interferon-γ to enhance plasmablast formation during germinal centre-like cultures. This was not seen for 11 patients without relapses and nine healthy controls. In the neuromyelitis optica spectrum disorders group, in vitro plasmablast formation corresponded to total and anti-aquaporin-4 immunoglobulin G secretion, of which the latter was found only for relapsing cases. These data indicate that naive B-cell homoeostasis is different and selectively targeted by corticosteroids in patients with neuromyelitis optica spectrum disorders. This also supports further exploration of naive B cells for their use in Toll-like receptor 9-dependent in vitro platforms in order to predict the activity of neuromyelitis optica spectrum disorders

    Multicentre comparison of a diagnostic assay: Aquaporin-4 antibodies in neuromyelitis optica

    Get PDF
    textabstractObjective Antibodies to cell surface central nervous system proteins help to diagnose conditions which often respond to immunotherapies. The assessment of antibody assays needs to reflect their clinical utility. We report the results of a multicentre study of aquaporin (AQP) 4 antibody (AQP4-Ab) assays in neuromyelitis optica spectrum disorders (NMOSD). Methods Coded samples from patients with neuromyelitis optica (NMO) or NMOSD (101) and controls (92) were tested at 15 European diagnostic centres using 21 assays including live (n=3) or fixed cell-based assays (n=10), flow cytometry (n=4), immunohistochemistry (n=3) and ELISA (n=1). Results Results of tests on 92 controls identified 12assays as highly specific (0-1 false-positive results). 32 samples from 50 (64%) NMO sera and 34 from 51 (67%) NMOSD sera were positive on at least two of the 12 highly specific assays, leaving 35 patients with seronegative NMO/spectrum disorder (SD). On the basis of a combination of clinical phenotype and the highly specific assays, 66 AQP4-Ab seropositive samples were used to establish the sensitivities (51.5-100%) of all 21 assays. The specificities (85.8-100%) were based on 92 control samples and 35 seronegative NMO/SD patient samples. Conclusions The cell-based assays were most sensitive and specific overall, but immunohistochemistry or flow cytometry could be equally accurate in specialist centres. Since patients with AQP4-Ab negative NMO/SD require different management, the use of both appropriate control samples and defined seronegative NMOSD samples is essential to evaluate these assays in a clinically meaningful way. The process described here can be applied to the evaluation of other antibody assays in the newly evolving field of autoimmune neurology

    Multicentre comparison of a diagnostic assay : aquaporin-4 antibodies in neuromyelitis optica

    No full text
    Altres ajuts: This study was funded by the Eugene Devic European Network (EDEN) project (ERA-Net ERARE 2: http://www.erare.eu/financed-projects/eden). Euroimmun AG provided assay kits for groups from Denmark and Hungary at 50% discount, and at no cost to both Italian groups. The work in Oxford was supported by the National Health Service National Specialised Commissioning Group for Neuromyelitis Optica and the National Institute for Health Research Oxford Biomedical Research Centre. Competing interests: AS is funded by Fundació la Marató de TV3 (101610). FT is enrolled in the doctoral programme SPIN funded by the Austrian Science Fund (FWF; project W1206). ZI is funded by Lundbeckfonden and Scleroseforeningen of Denmark. AB has received a grant from Bayer Healthcare on NMO. LZ would like to thank RH for her excellent technical assistance with the assay. RH was supported by a Schrödinger fellowship funded by the Austrian Science Fund (FWF; project J3230). CC acknowledges funding from Fundació la Marató de TV3 (493/C/2012). FP acknowledges funding from the Bundesministerium für Bildung und Forschung (Competence Network Multiple Sclerosis KKNMS). BW acknowledges funding from the Dietmar-Hopp-Stiftung and from Merck Serono. RM and AR acknowledge Nathalie Dufay from NeuroBioTec-Banques (Hospices Civils de Lyon, France) and funding from Association pour la Recherche sur la Sclerose en Plaques (ARSEP). PW has received speaker honoraria from Biogen Idec and Euroimmun AG; holds a patent with Oxford University for LGI1/CASPR2 antibodies, licensed to Euroimmun AG; and for GABAAR antibodies. MR reports other from University Hospital of Innsbruck (TILAK), during the conduct of the study; personal fees from Euroimmun, outside the submitted work. AS has received compensation for consulting services and speaking from Bayer-Schering, Merck-Serono, Biogen-Idec, Sanofi-Aventis, Teva Pharmaceutical Industries Ltd and Novartis. HHN has received travel funding and speaker honoraria from Novartis Healthcare, Biogen Idec, Genzyme Denmark and Teva Denmark. ZI reports grants from Lundbeckfonden, Denmark; Scleroseforeningen, Denmark, during the conduct of the study; personal fees from compensation for consulting services and speaking from Bayer-Schering, Biogen-Idec, Merck-Serono, Novartis, Sanofi-Aventis, and Teva Pharmaceutical Industries Ltd, outside the submitted work. TB reports non-financial support from Euroimmun AG, during the conduct of the study. KR is shareholder and an employee of Euroimmun AG. AB reports grants from Bayer Heathcare, personal fees from Biogen Idec, personal fees from Merck Serono, personal fees from Teva, personal fees from Novartis, personal fees from Genzyme, other from Biogen Idec, other from Novartis, other from Genzyme, other from Roche, other from Alexion Pharmaceuticals, outside the submitted work. LG received congress and travel compensations from Euroimmun. AB received honoraria for serving in the scientific advisory boards of Almirall, Bayer, Biogen Idec, Genzyme, and received speaker honoraria from Biogen Idec, Genzyme, Novartis, TEVA with approval by the Director of AOU San Luigi University Hospital; his institution has received grant support from Bayer, BiogenIdec, Merck, Novartis, TEVA from the Italian Multiple Sclerosis Society, Associazione Ricerca Biomedica ONLUS and San Luigi ONLUS. LZ reports personal fees from Teva Pharmaceutical, personal fees from Novartis, outside the submitted work. MC has received compensation for consulting services and speaking honoraria from Bayer Schering Pharma, Merk Serono, Biogen-Idec, Teva Pharmaceuticals, Sanofi-Aventis, Genzyme, and Novartis. XM has received speaking honoraria and travel expenses for scientific meetings, has been a steering committee member of clinical trials or participated in advisory boards of clinical trials in the past years with Bayer Schering Pharma, Biogen Idec, EMD Merck Serono, Genentech, Genzyme, Novartis, Sanofi-Aventis, Teva Phramaceuticals, Almirall and Roche. MT has received compensation for consulting services and speaking from Bayer-Schering, Merk-Serono, Biogen-Idec, Teva, Sanofi-Aventis, and Novartis. AS reports receiving grants from the Scientific and Technological Research Council of Turkey-Health Sciences Research (grants numbers 109S070 and 112S052); and also unrestricted grants from Bayer-Schering AG and Merck-Serono to their Neurology Department Clinical Neuroimmunology Unit. AS also reports receiving honoraria or consultation fees Biogen Idec, Novartis and Teva. He had received travel and registration coverage for attending several national or international congresses or symposia, from Merck Serono, Biogen Idec, Novartis, Teva, Bayer-Schering and Allergan. AA received grants to her department from The Scientific and Technological Research Institute of Turkey-Health Sciences (grants numbers 109S070 and 112S052), and she also received honoraria, research and travel grants from Teva, Merck-Serono, Gen Ilac, Bayer-Schering, Novartis. FP has received travel funding, speaker honoraria and personal compensation for activities on advisory boards and steering committees from Bayer, Biogen Idec, Alexion, Chugai, MedImmune, MerckSerono, Novartis, Teva, and Sanofi Genzyme. He has received grants from the Guthy Jackson Charitable Foundation and the National Multiple Sclerosis Society of the USA. OA reports grants from German Ministry for Education and Research (BMBF), during the conduct of the study; German Research Foundation (DFG); Hertie Foundation; Biogen; Novartis; Bayer; outside the submitted work; and Honoraria for consultancy and speaking by Biogen, Novartis, Bayer Schering, Teva, Chugai, Genzyme, MedImmune, and Merck Serono. BW reports personal fees from Bayer Healthcare, grants and personal fees from Biogen, Merck Serono; Genzyme, a Sanofi Company; Novartis Pharmaceuticals; TEVA Pharma; grants from Biotest, German Ministry of Education and Research; Dietmar Hopp Foundation; outside the submitted work. H-PH reports personal fees from MedImmune, outside the submitted work. MP is an employee of and holds stock in Euroimmun AG. PT reports non-financial support from Roche Pharmaceuticals, outside the submitted work. SS is an employee of Euroimmun AG. AV is on the Advisory Board for Neurology; was an associate editor for Brain; holds patents with Oxford University for MuSK, LGI1/CASPR2, and GABAAR antibodies, and receives a proportion of royalties. RM reports personal fees from MedImmune, personal fees and non-financial support from Biogen, non-financial support from Merck-Serono, non-financial support from Teva, non-financial support from Novartis, non-financial support from Sanofi, outside the submitted work.Antibodies to cell surface central nervous system proteins help to diagnose conditions which often respond to immunotherapies. The assessment of antibody assays needs to reflect their clinical utility. We report the results of a multicentre study of aquaporin (AQP) 4 antibody (AQP4-Ab) assays in neuromyelitis optica spectrum disorders (NMOSD). Coded samples from patients with neuromyelitis optica (NMO) or NMOSD (101) and controls (92) were tested at 15 European diagnostic centres using 21 assays including live (n=3) or fixed cell-based assays (n=10), flow cytometry (n=4), immunohistochemistry (n=3) and ELISA (n=1). Results of tests on 92 controls identified 12assays as highly specific (0-1 false-positive results). 32 samples from 50 (64%) NMO sera and 34 from 51 (67%) NMOSD sera were positive on at least two of the 12 highly specific assays, leaving 35 patients with seronegative NMO/spectrum disorder (SD). On the basis of a combination of clinical phenotype and the highly specific assays, 66 AQP4-Ab seropositive samples were used to establish the sensitivities (51.5-100%) of all 21 assays. The specificities (85.8-100%) were based on 92 control samples and 35 seronegative NMO/SD patient samples. The cell-based assays were most sensitive and specific overall, but immunohistochemistry or flow cytometry could be equally accurate in specialist centres. Since patients with AQP4-Ab negative NMO/SD require different management, the use of both appropriate control samples and defined seronegative NMOSD samples is essential to evaluate these assays in a clinically meaningful way. The process described here can be applied to the evaluation of other antibody assays in the newly evolving field of autoimmune neurology
    corecore