120 research outputs found

    FOSTER YOUTH ACHIEVEMENT IN POST-SECONDARY EDUCATION

    Get PDF
    This study explores the achievement gap of foster youth at a community college with one of the largest populations of foster students in a western state of the United States. This author used a mixed-methods design to identify the most salient factors that could contribute to the achievement of foster youth in context. The study included 109 foster students. The results showed that on average, 58% of foster youth experienced economic hardships. Eighty percent of them lacked social support. Most only accessed the Financial Aid and Scholarships Office and the Counseling Center, while the community college had at least 16 campus services. Unexpectedly, 76% of foster youth indicated they did not access the Guardian Scholars Foster Youth program when this service was designed for them. The qualitative data reflected similar findings. The lack of social support among foster youth was the most common challenge that foster students faced when they pursued their educational goals at the community college. To address this barrier, this author proposed a faculty learning community (FLC) to create a more supportive learning environment for all learners. The FLC focuses on the brain-targeted teaching model while including aspects of multicultural education and the universal design for learning in the emotional climate

    Does the COVID-19 Pandemic Disproportionately Affect the Poor? Evidence from a Six-Country Survey

    Get PDF
    The COVID-19 pandemic has wrought havocs on economies around the world. Yet, much needs to be learnt on the distributional impacts of the pandemic. We contribute new theoretical and empirical evidence on the distributional impacts of the pandemic on different income groups in a multi-country setting. Analyzing rich individual-level data from a six-country survey, we find that while the outbreak has no impacts on household income losses, it results in a 63-percent reduction in the expected own labor income for the second-poorest income quintile. The impacts of the pandemic are most noticeable in terms of savings, with all the four poorer income quintiles suffering reduced savings ranging between 5 and 7 percent compared to the richest income quintile. The poor are also less likely to change their behaviors, both in terms of immediate prevention measures against COVID-19 and healthy activities. We also find countries to exhibit heterogeneous impacts. The United Kingdom has the least household income loss and expected labor income loss, and the most savings. Japanese are least likely to adapt behavioral changes, but Chinese, Italians, and South Koreans wash their hands and wear a mask more often than Americans

    Autophagy Inhibitor Chloroquine Downmodulates Hepatic Stellate Cell Activation and Liver Damage in Bile-Duct-Ligated Mice

    Get PDF
    Hepatic stellate cell (HSC) activation via the autophagy pathway is a critical factor in liver fibrogenesis. This study tests the hypothesis that chloroquine (CQ) treatment can prevent autophagy and HSC activation in vitro and in vivo in bile-duct-ligated (BDL) mice. Sham-operated and BDL mice were treated with either PBS or CQ in two 60 mg/kg doses the day (D) before and after surgery. On day 2 (2D), HSCs were isolated, and their biological activities were evaluated by measuring intracellular lipid content, alpha-sma/collagen, and expression of autophagy lc3, sqstm1/p62 markers. The treatment efficacy on liver function was evaluated with serum albumin, transaminases (AST/ALT), and hepatic histology. Primary HSCs were treated in vitro for 24 h with CQ at 0, 2.5, 5, 10, 30, and 50 mu M. Autophagy and HSC activation were assessed after 2D of treatment. CQ treatment improved serum AST/ALT, albumin, and bile duct proliferation in 2D BDL mice. This is associated with a suppression of HSC activation, shown by higher HSC lipid content and collagen I staining, along with the blockage of HSC autophagy indicated by an increase in p62 level and reduction in lc3 staining. CQ 5 mu M inhibited autophagy in primary HSCs in vitro by increasing p62 and lc3 accumulation, thereby suppressing their in vitro activation. The autophagy inhibitor CQ reduced HSC activation in vitro and in vivo. CQ improved liver function and reduced liver injury in BDL mice

    Joint Communication and Computation Offloading for Ultra-Reliable and Low-Latency with Multi-tier Computing

    Get PDF
    In this paper, we study joint communication and computation offloading (JCCO) for hierarchical edge-cloud systems with ultra-reliable and low latency communications (URLLC). We aim to minimize the end-to-end (e2e) latency of computational tasks among multiple industrial Internet of Things (IIoT) devices by jointly optimizing offloading probabilities, processing rates, user association policies and power control subject to their service delay and energy consumption requirements as well as queueing stability conditions. The formulated JCCO problem belongs to a difficult class of mixed-integer non-convex optimization problem, making it computationally intractable. In addition, a strong coupling between binary and continuous variables and the large size of hierarchical edge-cloud systems make the problem even more challenging to solve optimally. To address these challenges, we first decompose the original problem into two subproblems based on the unique structure of the underlying problem and leverage the alternating optimization (AO) approach to solve them in an iterative fashion by developing newly convex approximate functions. To speed up optimal user association searching, we incorporate a penalty function into the objective function to resolve uncertainties of a binary nature. Two sub-optimal designs for given user association policies based on channel conditions and random user associations are also investigated to serve as state-of-the-art benchmarks. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms in terms of the e2e latency and convergence speed

    Drug-Related Problems in Coronary Artery Diseases

    Get PDF
    Coronary artery disease (CAD) remains the leading cause of mortality among cardiovascular diseases, responsible for 16% of the world’s total deaths. According to a statistical report published in 2020, the global prevalence of CAD was estimated at 1655 per 100,000 people and is predicted to exceed 1845 by 2030. Annually, in the United States, CAD accounts for approximately 610,000 deaths and costs more than 200 billion dollars for healthcare services. Most patients with CAD need to be treated over long periods with a combination of drugs. Therefore, the inappropriate use of drugs, or drug-related problems (DRPs), can lead to many consequences that affect these patients’ health, including decreased quality of life, increased hospitalization rates, prolonged hospital stays, increased overall health care costs, and even increased risk of morbidity and mortality. DRPs are common in CAD patients, with a prevalence of over 60%. DRPs must therefore be noticed and recognized by healthcare professionals. This chapter describes common types and determinants of DRPs in CAD patients and recommends interventions to limit their prevalence

    Urinary catecholamine excretion, cardiovascular variability, and outcomes in tetanus

    Get PDF
    Severe tetanus is characterized by muscle spasm and cardiovascular system disturbance. The pathophysiology of muscle spasm is relatively well understood and involves inhibition of central inhibitory synapses by tetanus toxin. That of cardiovascular disturbance is less clear, but is believed to relate to disinhibition of the autonomic nervous system. The clinical syndrome of autonomic nervous system dysfunction (ANSD) seen in severe tetanus is characterized principally by changes in heart rate and blood pressure which have been linked to increased circulating catecholamines. Previous studies have described varying relationships between catecholamines and signs of ANSD in tetanus, but are limited by confounders and assays used. In this study, we aimed to perform detailed characterization of the relationship between catecholamines (adrenaline and noradrenaline), cardiovascular parameters (heart rate and blood pressure) and clinical outcomes (ANSD, mechanical ventilation required, and length of intensive care unit stay) in adults with tetanus, as well as examine whether intrathecal antitoxin administration affected subsequent catecholamine excretion. Noradrenaline and adrenaline were measured by ELISA from 24-h urine collections taken on day 5 of hospitalization in 272 patients enrolled in a 2 × 2 factorial-blinded randomized controlled trial in a Vietnamese hospital. Catecholamine results measured from 263 patients were available for analysis. After adjustment for potential confounders (i.e., age, sex, intervention treatment, and medications), there were indications of non-linear relationships between urinary catecholamines and heart rate. Adrenaline and noradrenaline were associated with subsequent development of ANSD, and length of ICU stay

    Antibiotic use and prescription and its effects on Enterobacteriaceae in the gut in children with mild respiratory infections in Ho Chi Minh City, Vietnam. A prospective observational outpatient study.

    Get PDF
    BACKGROUND AND OBJECTIVES: Treatment guidelines do not recommend antibiotic use for acute respiratory infections (ARI), except for streptococcal pharyngitis/tonsillitis and pneumonia. However, antibiotics are prescribed frequently for children with ARI, often in absence of evidence for bacterial infection. The objectives of this study were 1) to assess the appropriateness of antibiotic prescriptions for mild ARI in paediatric outpatients in relation to available guidelines and detected pathogens, 2) to assess antibiotic use on presentation using questionnaires and detection in urine 3) to assess the carriage rates and proportions of resistant intestinal Enterobacteriaceae before, during and after consultation. MATERIALS AND METHODS: Patients were prospectively enrolled in Children's Hospital 1, Ho Chi Minh City, Vietnam and diagnoses, prescribed therapy and outcome were recorded on first visit and on follow-up after 7 days. Respiratory bacterial and viral pathogens were detected using molecular assays. Antibiotic use before presentation was assessed using questionnaires and urine HPLC. The impact of antibiotic usage on intestinal Enterobacteriaceae was assessed with semi-quantitative culture on agar with and without antibiotics on presentation and after 7 and 28 days. RESULTS: A total of 563 patients were enrolled between February 2009 and February 2010. Antibiotics were prescribed for all except 2 of 563 patients. The majority were 2nd and 3rd generation oral cephalosporins and amoxicillin with or without clavulanic acid. Respiratory viruses were detected in respiratory specimens of 72.5% of patients. Antibiotic use was considered inappropriate in 90.1% and 67.5%, based on guidelines and detected pathogens, respectively. On presentation parents reported antibiotic use for 22% of patients, 41% of parents did not know and 37% denied antibiotic use. Among these three groups, six commonly used antibiotics were detected with HPLC in patients' urine in 49%, 40% and 14%, respectively. Temporary selection of 3rd generation cephalosporin resistant intestinal Enterobacteriaceae during antibiotic use was observed, with co-selection of resistance to aminoglycosides and fluoroquinolones. CONCLUSIONS: We report overuse and overprescription of antibiotics for uncomplicated ARI with selection of resistant intestinal Enterobacteriaceae, posing a risk for community transmission and persistence in a setting of a highly granular healthcare system and unrestricted access to antibiotics through private pharmacies. REGISTRATION: This study was registered at the International Standard Randomised Controlled Trials Number registry under number ISRCTN32862422: http://www.isrctn.com/ISRCTN32862422

    Hydrogen bond networks determine emergent mechanical and thermodynamic properties across a protein family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gram-negative bacteria use periplasmic-binding proteins (bPBP) to transport nutrients through the periplasm. Despite immense diversity within the recognized substrates, all members of the family share a common fold that includes two domains that are separated by a conserved hinge. The hinge allows the protein to cycle between open (apo) and closed (ligated) conformations. Conformational changes within the proteins depend on a complex interplay of mechanical and thermodynamic response, which is manifested as an increase in thermal stability and decrease of flexibility upon ligand binding.</p> <p>Results</p> <p>We use a distance constraint model (DCM) to quantify the give and take between thermodynamic stability and mechanical flexibility across the bPBP family. Quantitative stability/flexibility relationships (QSFR) are readily evaluated because the DCM links mechanical and thermodynamic properties. We have previously demonstrated that QSFR is moderately conserved across a mesophilic/thermophilic RNase H pair, whereas the observed variance indicated that different enthalpy-entropy mechanisms allow similar mechanical response at their respective melting temperatures. Our predictions of heat capacity and free energy show marked diversity across the bPBP family. While backbone flexibility metrics are mostly conserved, cooperativity correlation (long-range couplings) also demonstrate considerable amount of variation. Upon ligand removal, heat capacity, melting point, and mechanical rigidity are, as expected, lowered. Nevertheless, significant differences are found in molecular cooperativity correlations that can be explained by the detailed nature of the hydrogen bond network.</p> <p>Conclusion</p> <p>Non-trivial mechanical and thermodynamic variation across the family is explained by differences within the underlying H-bond networks. The mechanism is simple; variation within the H-bond networks result in altered mechanical linkage properties that directly affect intrinsic flexibility. Moreover, varying numbers of H-bonds and their strengths control the likelihood for energetic fluctuations as H-bonds break and reform, thus directly affecting thermodynamic properties. Consequently, these results demonstrate how unexpected large differences, especially within cooperativity correlation, emerge from subtle differences within the underlying H-bond network. This inference is consistent with well-known results that show allosteric response within a family generally varies significantly. Identifying the hydrogen bond network as a critical determining factor for these large variances may lead to new methods that can predict such effects.</p

    Type-II Colloidal Quantum Wells: CdSe/CdTe Core/Crown Heteronanoplatelets

    Get PDF
    Solution-processed quantum wells, also known as colloidal nanoplatelets (NPLs), are emerging as promising materials for colloidal optoelectronics. In this work, we report the synthesis and characterization of CdSe/CdTe core/crown NPLs exhibiting a Type-II electronic structure and Type-II specific optical properties. Here, based on a core-seeded approach, the CdSe/CdTe core/crown NPLs were synthesized with well-controlled CdTe crown coatings. Uniform and epitaxial growth of CdTe crown region was verified by using structural characterization techniques including transmission electron microscopy (TEM) with quantitative EDX analysis and X-ray diffraction (XRD). Also the optical properties were systematically studied in these Type-II NPLs that reveal strongly red-shifted photoluminescence (up to similar to 150 nm) along with 2 orders of magnitude longer fluorescence lifetimes (up to 190 ns) compared to the Type-I NPLs owing to spatially indirect excitons at the Type-II interface between the CdSe core and the CdTe crown regions. Photoluminescence excitation spectroscopy confirms that this strongly red-shifted emission actually arises from the CdSe/CdTe NPLs. In addition, temperature-dependent time-resolved fluorescence spectroscopy was performed to reveal the temperature-dependent fluorescence decay kinetics of the Type-II NPLs exhibiting interesting behavior. Also, water-soluble Type-II NPLs were achieved via ligand exchange of the CdSe/CdTe core/crown NPLs by using 3-mercaptopropionic acid (MPA), which allows for enhanced charge extraction efficiency owing to their shorter chain length and enables high quality film formation by layer-by-layer (LBL) assembly. With all of these appealing properties, the CdSe/CdTe core/crown heterostructures having Type-II electronic structure presented here are highly promising for light-harvesting applications
    • …
    corecore