13 research outputs found

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Assessing the Risks of Potential Bacterial Pathogens Attaching to Different Microplastics during the Summer–Autumn Period in a Mariculture Cage

    No full text
    As microplastic pollution continues to increase, an emerging threat is the potential for microplastics to act as novel substrates and/or carriers for pathogens. This is of particular concern for aquatic product safety given the growing evidence of microplastic ingestion by aquaculture species. However, the potential risks of pathogens associated with microplastics in mariculture remain poorly understood. Here, an in situ incubation experiment involving three typical microplastics including polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP) was conducted during the summer–autumn period in a mariculture cage. The identification of potential pathogens based on the 16S rRNA gene amplicon sequencing and a custom-made database for pathogenic bacteria involved in aquatic environments, was performed to assess the risks of different microplastics attaching potential pathogens. The enrichment of pathogens was not observed in microplastic-associated communities when compared with free-living and particle-attached communities in surrounding seawater. Despite the lower relative abundance, pathogens showed different preferences for three microplastic substrates, of which PET was the most favored by pathogens, especially potentially pathogenic members of Vibrio, Tenacibaculum, and Escherichia. Moreover, the colonization of these pathogens on microplastics was strongly affected by environmental factors (e.g., temperature, nitrite). Our results provide insights into the ecological risks of microplastics in mariculture industry

    Unique Rhizosphere Microcharacteristics Facilitate Phytoextraction of Multiple Metals in Soil by the Hyperaccumulating Plant <i>Sedum alfredii</i>

    No full text
    Understanding the strategies that the roots of hyperaccumulating plants use to extract heavy metals from soils is important for optimizing phytoremediation. The rhizosphere characteristics of <i>Sedum alfredii</i>, a hyperaccumulator, were investigated 6 months after it had been planted in weathered field soils contaminated with 5.8 μg of Cd g<sup>–1</sup>, 1985.1 μg of Zn g<sup>–1</sup>, 667.5 μg of Pb g<sup>–1</sup>, and 698.8 μg of Cu g<sup>–1</sup>. In contrast with the non-hyperaccumulating ecotype (NHE), the hyperaccumulating ecotype (HE) of <i>S. alfredii</i> was more tolerant to the metals, and higher levels of Cd and Zn accumulated. The HE was characterized by a unique rhizosphere, including extensive root systems, a reduced soil pH, a higher metal bioavailability, and increased rhizomicrobial activity. The bioavailability of metals was significantly correlated with the HE’s unique bacterial communities (<i>P</i> < 0.005). The HE harbored abundant <i>Streptomyces</i> (9.43%, family Streptomycetaceae), <i>Kribbella</i> (1.08%, family Nocardioidaceae), and an unclassified genus (1.09%, family Nocardioidaceae) in its rhizosphere, a composition that differed from that of the NHE. PICRUSt analysis predicted high relative abundances of imputed functional profiles in the HE rhizosphere related to membrane transport and amino acid metabolism. This study reveals the rhizosphere characteristics, particularly the unique bacterial rhizobiome of a hyperaccumulator, that might provide a new approach to facilitating heavy metal phytoextraction

    Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis

    Get PDF
    Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.</p

    Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis

    Get PDF
    Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.</p
    corecore