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Aberrant activation of TCL1A promotes stem 
cell expansion in clonal haematopoiesis



Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem 
cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood 
cancers2–6, but the basis of their fitness advantage remains largely unknown, partly 
owing to a paucity of large cohorts in which the clonal expansion rate has been 
assessed by longitudinal sampling. Here, to circumvent this limitation, we developed 
a method to infer the expansion rate from data from a single time point. We applied 
this method to 5,071 people with clonal haematopoiesis. A genome-wide association 
study revealed that a common inherited polymorphism in the TCL1A promoter was 
associated with a slower expansion rate in clonal haematopoiesis overall, but the 
effect varied by driver gene. Those carrying this protective allele exhibited markedly 
reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, 
SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in 
DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the 
introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and 
the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and 
expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. 
Forced expression of TCL1A promoted the expansion of human HSCs in vitro and 
mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly 
mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.

Aging is characterized by the accumulation of somatic mutations, 
nearly all of which are ‘passengers’ that have little consequence for fit-
ness. However, infrequent fitness-increasing mutations—‘drivers’—may 
result in an expanded lineage of cells—that is, a clone. Clonal haema-
topoiesis of indeterminate potential (CHIP) is defined by the acqui-
sition of specific, cancer-associated driver mutations in HSCs from 
people without a blood cancer1. Genes commonly mutated in CHIP 
include regulators of DNA methylation (TET2 and DNMT3A), chroma-
tin remodelling (ASXL1) and RNA splicing (SF3B1, SRSF2 and U2AF1). 
CHIP carriers have a risk of haematologic malignancy, coronary heart 
disease and mortality in proportion to the variant allele fraction (VAF), 
a measure of clone size2–8. In contrast to clones with small VAF, which 
are ubiquitous in older individuals9, large-VAF clones are less common. 
The factors driving the expansion of these mutant clones are largely 
unknown, partly owing to a lack of large cohorts with serially sampled 
blood over decades, which would otherwise enable studies on genetic 
and environmental correlates of clonal expansion. Here we developed 
an approach called passenger-approximated clonal expansion rate 
(PACER) to investigate the germline determinants of clonal expan-
sion in 5,071 CHIP carriers from the NHLBI Trans-Omics for Precision 
Medicine (TOPMed) programme10,11, which revealed activation of TCL1A 
as an event driving clonal expansion downstream of multiple driver 
genes in CHIP.

Development of PACER
HSCs accrue passenger mutations at a rate that is constant over time and 
that is similar across individuals12–14. Thus, the number of passengers 

in the founding cell of a CHIP clone can be used to approximate the 
date of acquisition of the driver mutation (Fig. 1a). Previous stud-
ies have enumerated the passenger burden in HSCs by performing 
whole-genome sequencing (WGS) on colonies derived from single 
cells15,16. We theorized that the passenger burden in the founding cell 
of a CHIP clone could be approximated from WGS of whole-blood DNA 
without isolation of single cells. As a mutant clone expands, the VAF 
of both the driver and passenger mutations increases. The number of 
passengers in any given cell is simply the sum of the mutations present 
before the acquisition of the driver event (ancestral passengers) and 
the mutations acquired after the driver event (sub-clonal passengers). 
Because the limit of detection for mutations with WGS at approximately 
×38 coverage depth is equivalent to a VAF of around 8–10%, the detect-
able passengers in whole-blood DNA are far more likely to be ancestral 
passengers than sub-clonal passengers. This is because the sub-clonal 
passengers are private to each subsequent division of the original 
mutant cell, and, in the absence of a second driver event, quickly fall 
below the limit of detection in WGS data from bulk tissue (Supplemen-
tary Text 1). Furthermore, as the size of the clone also determines the 
number of detectable passengers from WGS owing to the limited sen-
sitivity of detection at ×38 depth, clones with high fitness will harbour 
more detectable passengers than those with lower fitness that arose at  
the same time. On the basis of these observations, we used the detect-
able passengers as a composite measure of clone fitness (defined as 
relative yearly growth rate of mutant HSC clones compared with HSCs 
without drivers) and birth date. For two individuals of the same age and 
with clones of the same size, we expect the clone with more passengers 
to be more fit, as it must have expanded to the same size in less time.
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We identified CHIP in 5,071 out of 127,946 TOPMed participants by 
analysing blood DNA WGS data with Mutect2 (ref. 17) at pre-specified 
loci (Methods and Supplementary Table 1). CHIP was strongly associ-
ated with age at blood draw and more than 75% of these mutations 
were in DNMT3A, TET2 or ASXL1, similar to our previous report from 
TOPMed11. To estimate the number of passenger mutations, we per-
formed genome-wide somatic variant calling for the 5,071 CHIP carri-
ers and 23,320 controls without CHIP using Mutect2. As these variant 
calls contain a combination of true somatic variants, germline variants 
and sequencing artefacts, we implemented a series of filters to enrich 
for the detection of true passengers (Methods). CHIP carriers had on 
average 271 passengers per genome after filtering (interquartile range: 
142–317), representing an increase of 54% (95% confidence interval: 
51%–57%) (Extended Data Fig. 1a) compared with the controls after 
adjusting for age and study cohort using a negative binomial regres-
sion. More than 98% of the passengers were non-coding. We presumed 
the detected passengers in those without CHIP were reflective of clonal 
haematopoiesis with unknown driver mutations18, although some of 
these could have been incompletely removed artefacts. The passengers 
were also positively associated with age, increasing by 13.7% on aver-
age (95% confidence interval: 13.0–14.3%) each decade. Although 89% 
of CHIP carriers had a single driver mutation, each additional driver 
mutation was associated with an increment in passenger mutation 
counts (Extended Data Fig. 1b). This is probably owing to the presence 
of cooperating driver mutations within a clone, as each successive 
expansion caused by a new driver captures additional passengers that 
accumulated in the time between the last driver event and the newer 
one. For this reason, we limited further analyses to the 4,536 CHIP car-
riers with a single driver event. In summary, the detected variants in 
our callset had several characteristics to suggest that they were highly 
enriched for bona fide passengers.

We first validated the passenger count as an estimator of fitness theo-
retically, by constructing a simulation of HSC dynamics to characterize 

the relationship between fitness and detectable passenger counts (Sup-
plementary Note 1). The simulation indicated that founding passengers 
were associated with driver fitness (Spearman’s ρ = 0.09, P < 2 × 10−16). 
We estimated a passenger mutation rate per diploid genome per year 
of 2.3, or a per-base pair rate of 3.83 × 10−10. This number is substan-
tially lower than previous estimates using WGS from single haemat-
opoietic colonies, in part because we limited the base substitutions 
in our analysis to C>T or T>C (Methods), but also probably owing to 
the lower sensitivity of detecting true passengers in whole-blood WGS 
compared with single-cell-derived colonies. Nonetheless, we were 
able to use these data to derive a hierarchical Bayesian estimator of 
clone fitness, which adjusts for age at blood draw and cohort effects 
and confirmed its correspondence to the observed passenger counts 
(Supplementary Note 1).

PACER estimates mutation fitness
An important test for the accuracy of our fitness estimator is a com-
parison of its predictions with those from empirical datasets in which 
clone growth is assessed longitudinally. An important prediction is 
fitness estimates of different driver mutations. Building on recent 
computational estimates of variant fitness19, we estimated the distribu-
tion of passenger counts for the most common CHIP driver genes as a 
measure of fitness. We used non-R882 DNMT3A mutations (DNMT3A 
R882–) as a reference point and estimated the relative abundances of 
passengers in other genes using negative binomial regression adjusting 
for age, VAF, sex and study cohort. We termed the approach of using 
age- and VAF-adjusted passenger mutations to estimate fitness in 
regression models PACER. According to PACER, mutations in splicing 
factors (SF3B1, SRSF2 and U2AF1) and JAK2V617F were the fastest grow-
ing, whereas DNMT3A R882– were among the slowest (Fig. 1b and Sup-
plementary Table 2). Mutations in TET2, ASXL1, PPM1D, TP53, ZBTB33 
and GNB1 were in the next tier and had approximately the same level 
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Fig. 1 | PACER enables estimation of clonal expansion rate from a single 
blood draw. a, A schematic depiction of using passenger counts to estimate 
the rate of expansion of a HSC clone after the acquisition of a driver mutation. 
The passengers (blue) that precede the driver (red) can be used to date the 
acquisition of the driver. b, The relative abundances of passenger counts were 
estimated for CHIP driver genes with at least 30 cases using a negative binomial 
regression, adjusting for age at blood draw, driver VAF and study. The total 
number of CHIP carriers included is 4,536. The coefficients are relative to 
DNMT3A R882− CHIP. Data are mean ± 95% confidence intervals; unadjusted, 
two-sided P values. c, The relative abundances of passengers are plotted against 
the empirical estimates of gene fitness derived from longitudinal deep 

sequencing in Fabre et al.16. Data are mean ± 95% confidence intervals. The 
estimate of the association from weighted least squares (slope = 2.7, P = 9.6 ×  
10−5, R2 = 80%) is plotted as a dashed line. d, Observed clonal expansion rate 
(dVAF/dT), defined as the change in VAF over time (in years), was associated 
with increased passenger counts in 55 CHIP carriers from the Women’s  
Health Initiative (WHI) dataset. Colours indicate the mutated driver gene.  
e, A multivariable model including passenger counts, age at blood draw and 
VAF indicates the relative contributions of age and VAF over baseline models. 
AIC, Akaike information criteria—smaller values indicate better model fit. 
Unadjusted, two-sided P values are reported for the passengers variable in the 
respective models.
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of fitness, as estimated from PACER. Relative to the R882− carriers, we 
observed a modest increase in fitness in DNMT3AR882 mutant clones. 
These observations are concordant with previous empirical estimates 
of variant fitness derived from longitudinal sequencing of samples with 
clonal haematopoiesis6,16,20–22. When driver gene fitness estimates from 
PACER were directly compared to estimates from a large longitudinal 
dataset of clonal haematopoiesis16, the coefficient of determination 
(R2) was 80% (Fig. 1c and Methods).

To further validate the utility of the passenger count, we tested 
whether PACER could also predict future clone growth within indi-
viduals. We performed targeted sequencing in 55 CHIP carriers from 
the Women’s Health Initiative (WHI) with a single driver mutation. Each 
individual had two blood samples taken at an interval ranging from 13 
to 19 years apart, which allowed us to determine the rate of change in 
VAF of the driver variant (

T
dVAF

d
) (Fig. 1d). WGS was used to determine 

passenger count at the first time point. We constructed a simple esti-
mator of 

T
dVAF

d
 using only the passengers, VAF from the first blood draw 

and age from the first blood draw (Methods). Our theoretical framework 
considered passengers to be an estimate of clone fitness after account-
ing for age and VAF; thus age and VAF variables were also considered 
in the model. A model that included age and VAF in addition to pas-
senger count was superior for predicting 

T
dVAF

d
 (R2 = 32.5%, adjusted R2 =  

28.6%) than models only including passengers (R2 = 12.6%, adjusted 
R2 = 11%), age (R2 = 13.9%, adjusted R2 = 12.3%) or VAF (R2 = 0.3%, adjusted 
R2 = −1.6%). In all models, the passenger count variable was significantly 
associated with 

T
dVAF

d
 (Fig. 1e and Extended Data Fig. 1c).

To contextualize its performance, we compared PACER with fitness 
estimators derived from longitudinal datasets (102 individuals with 
clonal haematopoiesis from Fabre et al.16 as well as 24 individuals from 
WHI) (Supplementary Note 2 and Supplementary Tables 3 and 4). Each 
individual had between three and five assessments of VAF over several 
years, and fitness estimates derived from the first two to four measure-
ments were used to predict 

T
dVAF

d
 between the penultimate and final 

time points. We observed that the point estimates of R2 for the correla-
tion of 

T
dVAF

d
 with fitness in these datasets ranged from 4.5% to 20%. 

These results indicate that PACER, which is derived from a single blood 
draw, predicted future clone growth comparably to, if not better than, 
fitness estimators derived from longitudinal data with two to four serial 
measurements.

To consider alternative statistical approaches, we compared the 
fitness estimates derived with PACER with our hierarchical Bayesian 
estimator of clone fitness (PACER-HB; Methods), and observed strong 
correspondence between the two fitness estimates (Supplementary 
Note 1), suggesting that the relative simplicity of PACER does not clearly 
reduce its performance compared with more sophisticated approaches.

GWAS of PACER
We performed a genome-wide association study (GWAS) of PACER in 
CHIP carriers to identify inherited genetic variation that associates with 
clonal expansion rate (Methods). In this analysis, we refer to the PACER 
score as the residuals from the linear regression of passenger counts 
with age at blood draw, study, VAF and the first ten genetic ancestry 
principal components included as covariates.

The GWAS identified a single locus at genome-wide significance 
overlapping TCL1A (Fig. 2a), and genetic fine-mapping further nar-
rowed down the associated region to a credible set containing a single 
variant, rs2887399 (Extended Data Fig. 1d and Methods). The refer-
ence allele at this variant is a guanine (G) and the alternate allele is a 
thymine (T). We did not find any association between PACER and rare 
variants near rs2887399, suggesting that rs2887399 is not tagging 
other genetic variants and is the causal variant at this locus (Extended 
Data Fig. 1e,f). The T allele of rs2887399 is common, occurring in 26% 
of haplotypes sequenced in TOPMed, and each additional T allele was 
associated with a decrease of 0.15 in the PACER z-score (P = 4.5 × 10−12). 

rs2887399 is located in the core promoter of TCL1A as defined by the 
Ensembl23 regulatory build 108, 162 base-pairs from the canonical tran-
scription start site (TSS) and was nominated as the causal gene by the 
Open Targets24 variant-to-gene prediction algorithm. TCL1A has been 
implicated in lymphoid malignancies25, but to our knowledge, it has 
not been studied in the context of HSC biology. Of note, the region in 
the TCL1A promoter where rs2887399 resides is poorly conserved with 
non-primate species (Extended Data Fig. 1g).

We next performed a genome-wide search of rare variation associated 
with the passengers and identified 15 windows associated with pas-
senger counts at Bonferroni significance (P = 2.9 × 10−5, Supplementary 
Tables 5 and 6), including a distal enhancer for TNFAIP3 (P = 5.4 × 10−7) 
(GeneHancer26).

Stratified associations with rs2887399
We tested whether the association between rs2887399 and PACER var-
ied by CHIP driver gene. Using DNMT3A as the reference, we observed 
that rs2887399 was more protective against clonal expansion in TET2 
than DNMT3A CHIP (beta = −0.24 per T allele, P = 9.6 × 10−4, Supple-
mentary Table 7). Stratification of PACER score by rs2887399 genotype 
revealed that the T allele slowed growth of TET2 clones but had little 
effect on DNMT3A clones (Fig. 2b).

Clones with a decreased expansion rate may never grow large 
enough to be detected, so we also performed association tests between 
rs2887399 and the presence of a CHIP-associated driver mutation strati-
fied by gene. In our previous analysis11, we reported that the T allele 
was associated with increased risk for DNMT3A mutations. Previous 
reports have also identified that the T allele of rs2887399 decreases 
risk for mosaic loss of the Y chromosome27 (LOY). We observed that 
rs2887399 was associated with significantly reduced odds of muta-
tions in TET2, ASXL1, SF3B1 and SRSF2 (Fig. 2c and Supplementary 
Tables 8 and 9). The effect size of rs2887399 was large, as carrying the 
T/T genotype conferred odds ratios for having a driver mutation in 
these genes from 0.22 to 0.63. The risk reduction was particularly 
marked for mutations in SF3B1 and SRSF2, as well as for having more 
than one non-DNMT3A driver mutation. In sum, these results indicate 
that the T allele at rs2887399 is protective against CHIP owing to driver 
mutations in several genes that have higher risk of progression to frank 
haematologic malignancy6,28.

Our analysis predicts that the T allele of rs2887399 should reduce the 
expansion rate of several non-DNMT3A mutant clones. We performed 
targeted sequencing in 900 additional participants in the WHI dataset 
at 2 time points taken a mean of 16.2 years apart and identified those 
with mutations in DNMT3A, TET2, ASXL1 or SF3B1 (n = 351, including 53 
previously identified from the PACER validation). Using this dataset, we 
tested whether the T allele was associated with the expansion rate of 
clonal haematopoiesis clones. We defined clonal expansion as the per 
cent growth per year of the clonal haematopoiesis clones as estimated 
by a Bayesian logistic growth model (Methods). We observed that each 
T allele of rs2887399 was associated with reduced expansion in TET2 
and ASXL1 mutant clones by 4% but not in DNMT3A-mutant clones, 
concordant with the PACER prediction (Fig. 2d and Supplementary 
Table 10). TET2 and ASXL1 clones with the T/T rs2887399 genotype 
had very slow rates of clonal expansion (0.5% mean growth per year) 
compared to clones with the G/G genotype (8.3% mean growth per year). 
These results provide further validation that PACER can accurately 
identify correlates of clonal expansion.

We sought to understand why the T allele of rs2887399 was associated 
with an increased prevalence of DNMT3A CHIP but had little effect on 
DNMT3A clonal expansion rate. Recent work has demonstrated that 
haematopoiesis becomes increasingly oligoclonal during aging as 
competition between clones with varying degrees of fitness intensi-
fies13. We hypothesized that carrying the T allele of rs2887399 would 
lead to an increased likelihood of DNMT3A-mutant clones growing to 
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detectable levels owing solely to reduced fitness of other competing 
clones. To test this hypothesis, we performed a simulation of clonal 
expansion with two competing clones carrying DNMT3A and TET2 
mutations, respectively. The fitness of the DNMT3A clone remained 
constant but the fitness of the TET2 clone was 20% higher relative to 
DNMT3A in one setting and 20% lower in the other setting, similar to 
the estimates from PACER for relative fitness of TET2 clones from those 
with G/G versus T/T genotype at rs2887399. Reducing the fitness of 
TET2 was sufficient to increase the likelihood of the DNMT3A clone 
expanding to detectable levels (Extended Data Fig. 2a).

TCL1A expression in haematopoietic cells
We sought to establish how rs2887399 alters clonal expansion. We 
first tested whether rs2887399 was associated with TCL1A expression 
in any cell type. As identified in GTEx v8 (ref. 29), the T allele reduces 
expression of TCL1A in whole blood (normalized effect size = −0.13, 
P = 1.4 × 10−5). The PACER GWAS colocalized30 with cis-expression quan-
titative trait loci (eQTLs) for TCL1A in whole blood (posterior probability 
of a single shared causal variant = 97.1%; Extended Data Fig. 2b). This 
association is likely to be driven by B cells, as TCL1A is highly expressed 
in B cells but appears to have absent or exhibit low expression in all other 
cell types in blood except in rare plasmacytoid dendritic cells (Extended 
Data Fig. 2c, Supplementary Table 11 and the Human Cell Atlas31).

Little is known about TCL1A expression in HSCs. We examined 
whether CHIP-associated mutations altered the regulation of the TCL1A 
locus in human haematopoietic stem and progenitor cells (HSPCs) 
using publicly available single-cell RNA-sequencing (scRNA-seq) 
and transposase-accessible chromatin high-throughput sequencing 
(ATAC-seq) datasets of normal and malignant haematopoiesis. TCL1A 

was expressed in less than 1 in 1,000 cells identified as HSCs or multipo-
tent progenitors (MPPs) (HSC/MPPs) in scRNA-seq data from six normal 
human marrow samples32,33 (range 0–0.17%). By contrast, TCL1A was 
expressed in a much larger fraction of HSC/MPPs in 3 out of 5 patients 
with TET2- or ASXL1-mutated myeloid malignancies (range 2.7–7%) 
(Extended Data Fig. 3a and Supplementary Table 12). Next, using a 
dataset of ATAC-seq in normal and pre-leukaemic HSCs34 (pHSCs), 
which are residual non-leukaemic HSCs present in patients with acute 
myeloid leukaemia (AML) that often harbour only the initiating driver 
mutations, we evaluated chromatin accessibility at the TCL1A pro-
moter. Consistent with the lack of TCL1A transcripts in normal HSCs, 
we observed that the promoter was not accessible in HSCs from healthy 
donors, in HSCs from patients with AML that carried no driver muta-
tions, or in pHSCs with DNMT3A mutations. By contrast, the patients 
with TET2-mutated pHSCs had clearly accessible chromatin at the TCL1A 
promoter (Extended Data Fig. 3b), and this locus had the greatest log2 
fold-change of any differentially accessible TSS peak in TET2-mutant 
versus control samples (Supplementary Table 13).

We next tested whether the neighbouring genes TCL6 or TCL1B 
became expressed or had accessible chromatin in HSCs carrying 
CHIP mutations in these same datasets. In contrast to the result for 
TCL1A, no RNA expression or accessible promoter chromatin could 
be found at these genes in HSCs (Extended Data Fig. 3c and Supple-
mentary Table 12), further supporting TCL1A as the causal gene for 
clonal expansion.

Functional effect of rs2887399 on HSCs
On the basis of these observations, we proposed the following mecha-
nistic model: normally, the TCL1A promoter is inaccessible and gene 
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expression is repressed in HSCs. In the presence of driver mutations in 
TET2, ASXL1, SF3B1, SRSF2 or with LOY, TCL1A is aberrantly expressed and 
drives clonal expansion of the mutated HSCs. The presence of the T allele 
of rs2887399 restricts chromatin accessibility at the TCL1A promoter, 
leading to reduced expression of TCL1A RNA and protein and abrogation 
of the clonal advantage due to the mutations (Extended Data Fig. 4).

To test our model experimentally, we obtained human CD34+ mobi-
lized peripheral blood cells from donors who were G/G, G/T, or T/T at 
rs2887399. The three donors were healthy and between 29 and 32 years 
old at the time of donation. We used CRISPR to introduce insertion–
deletion mutations with high efficiency in DNMT3A, TET2 or ASXL1 to 
mimic CHIP variants, or at the adeno-associated virus integration site 
1 (AAVS1) as a control (Fig. 3a and Extended Data Fig. 5).

First, we examined whether chromatin accessibility at the TCL1A pro-
moter was altered by rs2887399 genotype. We edited CD34+ cells from 

each genotype for TET2, sorted cells with a marker profile of HSCs and 
MPPs (Lin−CD34+CD38−CD45RA−), cultured them in cytokine-supported 
medium, and then performed ATAC-seq. Consistent with the pHSC 
data, we detected increased chromatin accessibility at the TCL1A pro-
moter in TET2-edited, but not DNMT3A-edited, cells from the rs2887399 
G/G donor relative to AAVS1-edited cells (Fig. 3b, Extended Data Fig. 6 
and Supplementary Table 14). However, chromatin accessibility was 
decreased in samples from carriers of the T allele in a dose-dependent 
manner, indicating that the protective effect of the T allele of rs2887399 
is mediated by blocking TCL1A promoter accessibility.

Next, we tested whether the T allele of rs2887399 altered TCL1A pro-
tein expression in HSC/MPPs. We edited CD34+ cells with the three 
rs2887399 genotypes at AAVS1, DNMT3A, TET2 and ASXL1 and per-
formed a flow cytometry-based assay for TCL1A protein expression after 
culturing the cells for 11 days. Around 1% of HSCs/MPPs from AAVS1- or 
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DNMT3A-edited samples were positive for TCL1A, which did not vary 
by rs2887399 genotype. By contrast, 4.6–9.3% of HSC/MPPs from the 
G/G donor that had been edited for ASXL1 or TET2 expressed TCL1A, and 
the proportion of TCL1A-positive HSC/MPPs decreased in donor sam-
ples with each additional T allele (Fig. 3c,d and Extended Data Fig. 7a). 
There was minimal expression of TCL1A in any non-HSC/MPP CD34+ 
population in any of the samples. Notably, less than 10% of HSC/MPPs 
expressed TCL1A in any sample, even though the proportion of mutant 
cells was greater than 90% (Extended Data Fig. 5), suggesting that only 

a fraction of HSC/MPPs express TCL1A at any given time, even in the 
presence of TET2 or ASXL1 mutations. This is consistent with scRNA-seq 
data from haematological malignancy samples (Extended Data Fig. 3a).

To test whether the rs2887399 genotype had an effect on expansion 
of HSPCs in vitro, we edited the CD34+ cells from G/G and T/T donors, 
sorted HSCs (Lin−CD34+CD38−CD45RA−CD90+), and analysed HSPC 
counts after 14 days. There was a notable expansion of cells bearing 
markers of HSC/MPPs in the ASXL1- and TET2-edited samples from the 
rs2887399 G/G donor compared to the AAVS1-edited sample, but this 
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effect was abrogated in edited samples from the rs2887399 T/T donor 
(Fig. 3e). A population of cells that was Lin−/loCD34+CD38−CD45RAlo 
(CD45RAlo HSPCs), presumably progenitors descended from the 
HSC/MPP population, was also markedly expanded in the ASXL1- and 
TET2-edited samples from the G/G donor, but the degree of expan-
sion was partially reversed in the edited samples from the T/T donor 
(Extended Data Fig. 7b). The ratio of CD34+CD45RA−/lo progenitors to 
CD34− cells was also increased in the ASXL1- and TET2-edited samples 
from the G/G donor compared with the T/T donor, indicating either less 
retention of stem or progenitor cell activity or faster differentiation in 
the absence of TCL1A expression (Extended Data Fig. 7c). There was no 
effect on HSPC expansion in the AAVS1- or DNMT3A-edited samples 
based on rs2887399 genotype. Furthermore, we were unable to detect 
any significant differences in expansion of DNMT3A-edited HSCs based 
on rs2887399 genotype even when older donors were used (Supple-
mentary Table 15). Thus, carrying the T allele of rs2887399 abrogates 
the clonal expansion of HSPCs with ASXL1 and TET2 mutations in an 
experimental system, but has minimal direct effect on fitness of mutant 
DNMT3A clones, consistent with the PACER analysis.

To orthogonally validate the necessity of TCL1A for clonal expansion, 
we edited CD34+ cells from a rs2887399 G/G donor with AAVS1 or TET2 
guides, followed by lentiviral delivery of short hairpin RNA (shRNA) 
targeting TCL1A or scramble control. The TCL1A shRNA construct we 
used was validated to reduce TCL1A protein expression by around 
90% (Extended Data Fig. 8a). We then sorted GFP+ HSC/MPPs and per-
formed the same in vitro expansion assay. The increase in TET2-mutated  
HSC/MPP counts seen after 14 days was nearly completely attenuated 
by TCL1A knockdown (Fig. 3f), indicating that TCL1A expression is  
necessary for expansion of TET2-mutant HSCs in this assay.

TCL1A expression promotes HSC expansion
If aberrant TCL1A expression is the major reason for positive selection 
of TET2-, ASXL1-, SF3B1- and SRSF2-mutant HSCs, then forced expression 
of TCL1A in unmutated HSCs should be sufficient to recapitulate clonal 
expansion phenotypes. To test this hypothesis, we transduced human 
CD34+ cells with lentivirus containing the TCL1A open reading frame 
(TCL1A-eGFP) or empty vector control (control-eGFP) (Fig. 4a) and 
performed in vitro clonal expansion assays on purified HSC/MPPs. The 
per-cell level of TCL1A protein expression in TCL1A-eGFP-transduced 
HSCs was similar to that in TET2-mutant HSCs (Extended Data Fig. 8b). 
After 14 days, cultures from HSCs that received TCL1A-eGFP virus had 
approximately fourfold higher counts of phenotypic HSC/MPPs and 
colony-forming cells compared with cultures from HSCs that received 
control-eGFP virus (Fig. 4b), indicating that TCL1A expression was suf-
ficient for HSC clonal expansion.

To assess whether TCL1A expression was sufficient to promote HSPC 
fitness in vivo, we infected c-Kit+ bone marrow cells from CD45.2 mice 
with TCL1A-eGFP or control-eGFP lentivirus and admixed these cells 
with competitor GFP− CD45.2 whole bone marrow, with the proportion 
of GFP+ cells in the Lin− fraction of the resulting cell mixture totalling 
around 4% in each group (Methods and Extended Data Fig. 9a). Fol-
lowing transplantation of these cells into lethally irradiated CD45.1 
recipient mice, we tracked the proportion of GFP+ donor cells in blood 
over time (n = 8 per group). At 4 weeks after transplant, the propor-
tion of donor GFP+ granulocytes and total leukocytes was similar in 
both groups, but over the subsequent 16 weeks the proportion of GFP+ 
blood cells increased in the mice that received TCL1A-eGFP-transduced 
cells but not in the mice that received control-eGFP transduced cells 
(Fig. 4c and Extended Data Fig. 9b). Twenty-two weeks after transplant, 
we assessed chimerism in the marrow. For our primary analysis, we 
examined the Lin−c-Kit+SCA-1+ compartment that contains all relevant 
mouse HSC and MPP subsets and found a marked increase in the per-
centage of GFP+ donor cells in the mice given TCL1A-eGFP-transduced 
cells compared with mice given control cells (mean 23.8% versus 3.9%, 

P = 0.0054) (Fig. 4d). For secondary analyses, we also examined the dif-
ferent subsets of HSC/MPPs (LT-HSC, ST-HSC, MPP2, MPP3 and MPP4, 
as defined in Pietras et al.35) and found significant increases in the per-
centage of GFP+ cells in all these compartments in the mice receiving 
TCL1A-eGFP cells compared to mice receiving control cells (Extended 
Data Fig. 9c). These results provide in vivo confirmation of stem and 
progenitor cell expansion due to TCL1A expression.

To further characterize the effect of TCL1A, we assessed the cell 
cycle status of cultured human HSC/MPPs and observed that TCL1A- 
expressing cells were about twofold more likely to be cycling com-
pared with control cells (Fig. 4e). To uncover the mechanism by which 
TCL1A promotes proliferation of HSCs, we transduced TCL1A-eGFP or 
control-eGFP into CD34+ cells from two normal donors that were G/G 
or T/T at rs2887399, cultured GFP+ HSC/MPPs, and then performed 
cellular indexing of transcriptomes and epitopes by sequencing 
(CITE-seq) after seven days. After integration, dimensionality reduc-
tion and clustering (Methods), we annotated four clusters of HSC/
MPPs as well as two populations of myeloid progenitors using the 
cell surface markers CD34, CD38, CD45RA, CD49f and CD11a (Fig. 4f, 
Extended Data Fig. 10a and Supplementary Table 16). Pseudotime36 
analysis supported a trajectory of progression from HSC/MPP1 (initial 
state) to 4 (most ‘differentiated’ state) (Extended Data Fig. 10b). HSC/
MPP1 expressed stem-cell identity genes such as MECOM, FAM30A and 
HEMGN, as well as high levels of proliferative markers such as MKI67, 
TOP2A, PCNA and CENPA (Fig. 4g). By contrast, HSC/MPP2–4 expressed 
lower levels of stem cell identity genes and proliferative markers. Cell 
cycle analysis confirmed that these clusters contained cells that were 
predominantly in G0 or G1 phase (Extended Data Fig. 10c). HSC/MPP3–4 
also displayed a progressive increase in genes associated with the inte-
grated stress response such as PPP1R15A (also known as GADD34), DDIT3  
(also known as CHOP) and ATF4, as well as FOXO target genes such as 
CDKN1A (which encodes p21), CDKN1B (encoding p27), SOD2, CCNG2 
and TXNIP (Fig. 4g and Extended Data Figs. 10d and 11a). TCL1A has been 
reported to bind to and increase kinase activity of all AKT isoforms 
through an unknown mechanism37, and one well-studied downstream 
consequence of active AKT is inhibition of FOXO-mediated transcrip-
tion38. FOXO transcription factors can drive downstream target gene 
expression in an adaptive response to stressors to preserve cell viabil-
ity, but prolonged activation of this response can lead to a terminal 
state of cell cycle arrest or apoptosis39. Indeed, cells in HSC/MPP4 also 
expressed the highest levels of apoptosis effector genes BAD, BCL2L11 
(encoding BIM) and BBC3 (encoding PUMA). Of note, we found that 
TCL1A expression led to a significant increase in the proportion of cells 
in the HSC/MPP1 cluster, and a significant decrease in the proportion 
of cells in the HSC/MPP3 and HSC/MPP4 clusters, an effect that was 
consistent in both donors (Fig. 4h and Extended Data Fig. 11b,c). When 
considered in aggregate, the HSC/MPP clusters from TCL1A-expressing 
samples had reduced expression of FOXO target genes or gene sets 
and increased expression of cell cycle associated genes or gene sets 
compared with control samples (Supplementary Tables 17 and 18).  
This indicates that TCL1A may function to preserve HSCs in a prolifera-
tive state by avoiding prolonged, deleterious stress responses.

Discussion
We have developed an approach for inferring clonal expansion rate 
from a single time point and used it to perform a GWAS for CHIP clonal 
expansion rate (see also Supplementary Note 3). We found that a com-
mon variant with a large effect in the promoter of TCL1A was associated 
with a slower expansion rate and a markedly reduced prevalence of 
several common driver mutations in CHIP. This variant is likely to block 
the aberrant de-repression of TCL1A, which normally occurs in HSCs 
downstream of mutations in TET2, ASXL1, SF3B1, SRSF2, LOY and possi-
bly mutations in other driver genes, thus implicating TCL1A expression 
as a dominant reason for positive selection of these clones. Necessity 
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and sufficiency experiments further supported TCL1A expression as a 
causal factor in clonal expansion of HSCs. Notably, our results suggest 
that pharmacologically targeting TCL1A may suppress the growth of 
CHIP and haematological cancers associated with mutations in these 
genes. PACER is a powerful approach for identifying the genetic and 
environmental factors mediating clonal expansion in humans at popu-
lation scale and may be applied to any tissue in which pre-malignant 
clones exist40–42.
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Methods

Ethical approval
Informed consent was obtained by each of the participating TOPMed 
cohorts for all participants. The participating cohorts and institutional 
review boards are described in Supplementary Table 19, ‘TOPMed stud-
ies included’. Blood DNA samples from WHI participants were obtained 
with informed consent and the CHIP longitudinal assessment study 
was reviewed and approved by the Fred Hutchinson Cancer Center 
Institutional Review Board (IRB no. 10186). Mobilized peripheral blood 
was obtained from donors by Fred Hutchinson Cooperative Center 
of Excellence in Hematology using protocols approved by the Fred 
Hutchinson Cancer Center Institutional Review Board.

Study samples
WGS was performed on 127,946 samples as part of 51 studies contri
buting to the Freeze 8 NHLBI TOPMed programme as previously 
described10,11. None of the TOPMed studies included individuals 
selected for sequencing because of haematologic malignancy. Each 
of the included studies provided informed consent. Information on the 
included cohorts, sequencing centres and ethical approvals is included 
in Supplementary Tables 19–21. Age was obtained for 82,807 of the 
samples: the median age was 55 years, the mean age was 52.5 years, and 
the maximum age was 98 years. The samples have diverse reported eth-
nicity (40% European, 32% African, 16% Hispanic/Latino and 10% Asian).

WGS processing, variant calling and CHIP annotation
BAM files were remapped to hg38 and harmonized through the func-
tionally equivalent pipeline44. SNPs and indels were discovered across 
TOPMed and were jointly genotyped across samples using the Got-
Cloud pipeline45. An SVM filter was trained to discriminate between 
high- and low-quality variants. Variants were annotated with snpEff 
4.3 (ref. 46). Sample quality was assessed through Mendelian discord-
ance, contamination estimates and sequencing convergence, among 
other quality control metrics.

Putative somatic single nucleotide variants and indels were called 
with GATK Mutect2 (ref. 17), which searches for sites where there is 
evidence for alternative reads that support evidence for variation, and 
then performs local haplotype assembly. We used a panel of normals to 
filter sequencing artefacts and used an external reference of germline 
variants to exclude germline calls. We deployed this pipeline on Google 
Cloud using Cromwell47.

As described in our previous report11, samples were annotated as 
having CHIP if the Mutect2 output contained at least one variant in 
a curated list of leukaemogenic driver mutations with at least three 
alt-reads supporting the call. We expanded the list of driver mutations 
to include those in recently identified CHIP genes48, increasing the 
number of CHIP cases from our previous report. A special approach 
was required to identify somatic variants in U2AF1 since an erroneous 
segmental duplication in the region of the gene in the hg38 reference 
genome resulted in a mapping score of zero during alignment of the 
FASTQ file49. We developed a Rust-HTSLIB binary (https://github.com/
weinstockj/pileup_region) to specifically identify reads associated with 
the U2AF1 variants S34F, S34Y, R156H, Q157P and Q157R. A minimum 
of five alternate reads was required to include a variant in the somatic 
set of CHIP calls. The variant set was judged to have a high likelihood 
of being somatic based on the strong age association for people car-
rying mutations as well as a high rate of co-mutation with other known 
drivers. The VAF was estimated by dividing the alternate read count by 
the total read count for U2AF1.

True passengers should very rarely be recurrent in a dataset, unlike 
many germline variants or technical artefacts. Therefore, we pruned 
our callset by identifying Mutect2 variants that appeared in only a single 
individual among the CHIP carriers and 23,320 additional controls for 
a total of 28,391 individuals. We excluded any variant that appeared 

in the TOPMed Freeze 5 germline callset (463 million variants). We 
excluded variants with a depth below 25 or above 100 and excluded 
any variants in low-complexity regions or segmental duplications, as 
these are challenging for variant calling. We only included somatic 
singletons that were aligned to the primary chromosomal contigs. 
We excluded any variant with a VAF exceeding 35% as these may be 
enriched for germline variants that were not included in our other 
filters. We used cyvcf2 (ref. 50) to parse the Mutect2 VCFs and encoded 
each variant in an int64 value using the variant key encoding51. Since 
different base substitutions varied in their association with age at blood 
draw, we selected only C>T and T>C mutations, as these were the most 
strongly age-associated in our data, consistent with prior work identify-
ing such mutations as essential elements of the ‘clock-like’ signature52. 
We developed a bespoke Python application to perform the singleton 
identification and filtering.

Estimation of passenger mutation rate, clone fitness and clone 
birth date with PACER-HB
We developed a hierarchical Bayesian latent variable model using the 
Stan53,54 probabilistic programming language. We used the negative 
binomial likelihood with a mean and over-dispersion parameteriza-
tion to facilitate interpretation. We used the identity function to link 
the passenger counts to the predictors as we modelled the effects on 
an additive scale. We modelled the expectation and over-dispersion 
of the passenger counts observed at time ti as

E t µT s t T α(counts ( )) = + ( − ) +i i i i i i k

t E t

I i θ I i θ

counts ( ) NegativeBinomial ( (counts ( )),

( ∈ CHIP) + (1 − ( ∈ CHIP)) )
i i i i

0 1

where Ti is the time of the driver acquisition for sample i with a blood 
draw at time ti, μ is the mutation rate per diploid genome per year for 
the HSC population, si is the fitness of the clone, and αk represents 
a study-specific random intercept for sample i included in study k. 
We can interpret ti − Ti as the lifetime of the clone in years. We used a 
negative binomial likelihood as there was over-dispersion relative to 
a Poisson distribution.

We included several constraints and priors on the parameters to 
make them identifiable. We constrained Ti to be positive but exceeded 
by ti such that the parameter would be in yearly units. We included 
case-control specific over-dispersion terms θ0 and θ1 as the CHIP carriers 
had greater dispersion. To adjust for batch effects, we included a ran-
dom intercept, as the amount of singletons in controls varied by study.

To include the constraint on Ti, we defined Ti = ψi × agei, with ψi con-
strained between 0 and 1, and agei is the age at blood draw. We placed 
an uninformative Beta(1, 1.3) prior on ψi, which is equivalent to the 
supposition that the driver mutation is twice as likely to be acquired 
in the second half of life (at the time of blood draw) then the first. We 
assumed the study-specific deviations were exchangeable with respect 
to a N(0, 20) prior, providing some shrinkage on the study-specific 
intercepts. We placed a N(0, 1) prior on the si parameter to aid identifica-
tion. Further details are described in the supplementary information.

To estimate the posterior, we used the Stan Hamiltonian Monte Carlo 
sampler with four separate chains, and used 400 samples of burn-in. 
We assessed convergence using the Rhat and effective sample size 
statistics. We tried multiple parameterizations to reduce the number 
of divergent transitions. We performed posterior predictive checks 
to assess the model fit.

Simulation of HSC dynamics
We simulated the number of cells within an HSC clone as a birth–death 
continuous time Markov chain, which models the size of an HSC clone 
as the composite of simultaneous Poisson birth and Poisson death point 
processes (Supplementary Note 1). Following Watson et al.19, HSCs 
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could transition to one of three states: asymmetric renewal, symmetric 
self-renewal and symmetric differentiation. The rate of transition was 
determined by the symmetric differentiation rate of the cell per year, 
which was set to five. The symmetric self-renewal and symmetric differ-
entiation increase and decrease the size of the HSC clone respectively. 
As asymmetric division does not affect the size of the clone, we did 
not explicitly simulate transition to this state. The proclivity towards 
self-renewal was determined by the fitness of the clone. We set the 
entire HSC population to acquire a single driver mutation during the 
‘lifetime’ of the simulation.

Passengers were accumulated over time using a birth Poisson point 
process. We then calculated the number of ‘detectable’ passengers that 
preceded the acquisition of the driver based on whether the underly-
ing clone had expanded to a large enough proportion of HSC cells. We 
examined the association between the number of detectable passen-
gers and the fitness of the underlying HSC clone. We implemented this 
simulation in the Julia programming language 1.4 (ref. 55).

Fitness estimates for driver genes
We determined the association between the driver genes and the pas-
senger counts using DNMT3A non-R882 mutations as the reference in a 
negative binomial regression using the glm.nb function from the MASS 
R package56. We included age, study cohort, VAF and sex as covariates. 
We included the genes that had at least 30 carriers in the dataset, exclud-
ing those with multiple driver genes mutated. To benchmark PACER, 
we compared the fitness estimate from our model (the coefficient for 
each gene using DNMT3A non-R882 mutations as the referent group) 
with the fitness estimates from supplementary Table 6 of Fabre et al.16 
(GeneEffect_mean + SiteEffect_mean variable). To transform the Fabre 
et al. gene level estimates to a scale comparable to the PACER estimates, 
we performed a linear regression of the log transformed fitness esti-
mate against an independent variable indicating the driver gene, with 
DNMT3A non-R882 mutations as the reference level. To estimate the 
association between these fitness estimates and the PACER estimates, we 
performed weighted least squares regression of the Fabre et al. fitness 
estimates against the PACER gene fitness estimates, with the weights 
defined as 1/FabreSE, where FabreSE is defined as the standard error of 
the Fabre et al. driver gene fitness estimate. For this comparison, we 
included genes that were reported in our PACER gene fitness estimates.

Amplicon sequencing of longitudinal samples in WHI
We performed targeted sequencing of the CHIP driver genes using 
single-molecule molecular inversion probe sequencing (smMIPS11,57) 
on two blood DNA samples taken approximately 14–19 years apart from 
900 individuals not previously assessed for CHIP as well as 55 individu-
als known to have a single CHIP mutation from TOPMed WGS from 
the WHI. Women aged 50–79 years were enroled from 40 WHI clinical 
centres in the USA between 1993 and 1998. All WHI participants had a 
blood sample collected at the time of enrolment, and a subset had sub-
sequent blood sample collected 14–19 years later. Reads were aligned 
with bwa-mem to hg38 and processed with the mimips pileline58. We 
called somatic variants using an ensemble of VarScan59, Mutect2 (ref. 17) 
and manual inspection with IGV60 as previously described61. Including 
the 55 individuals previously known to have CHIP, a total of 455 individu-
als were identified to have clonal haematopoiesis at a VAF threshold 
for inclusion of variants of >0.005, and 351 of these had mutations in 
DNMT3A, TET2, ASXL1, or SF3B1.

Prediction of future growth in WHI
We used longitudinal sequencing data from the 55 CHIP carriers from 
WHI with WGS done at baseline to assess whether passengers could 
predict future clone growth rate. To determine the change in clone size 
over time (dVAF/dT), we divided the change in VAF at the two time points 
(from smMIPS) by the change in age in years. Of the 55 CHIP carriers, 15 
had clones which had negative dVAF/dT. It was unlikely that these driver 

mutations had negative fitness since they had expanded to detectable 
levels in the blood starting from a single mutant cell. For these 15 car-
riers, we set the dVAF/dT to 0, since we presumed the negative change 
in clone size observed was due to short-term factors not related to 
intrinsic fitness of the clone, such as a change in blood cell differential 
across time leading to an apparently lower VAF at the second time point 
or stochastic drift. We then performed a series of linear models with 
inverse normal transformed dVAF/dT as the dependent variable and 
age at first blood draw, VAF, and passenger count as the independent 
variables. Model performance was assessed with adjusted R2 and Akaike 
information criterion for each model. We performed hypothesis testing 
of the passenger count coefficient using a Wald test.

Bayesian logistic growth model of clonal expansion
We used longitudinal sequencing data from 351 clonal haematopoie-
sis carriers (VAF > 0.005) with mutations in DNMT3A, TET2, ASXL1 or 
SF3B1, as identified using smMIPS described above, to test whether 
the T allele at rs2887399 altered clonal expansion rate. To estimate 
the rate of clonal expansion in the CHIP carriers in units of per cent 
growth per year, we developed a Bayesian logistic growth model. The 
model includes four terms that encode the growth rate of DNMT3A, 
TET2, ASXL1 and SF3B1 carriers with the rs2887399 G/G genotype, and 
four interaction terms that estimate how the rate of clonal expansion 
is modified for each additional T allele at rs2887399. We modelled the 
observed number of mutated alleles using a beta-binomial likelihood, 
and included a random intercept and slope for each individual donor:

x R U U= (Gene + × Gene + ) × age +i ij i ij i i1 2

q =
0.5

1 + ei x− i

P Y y P q β D y( = ) = (beta binomial( , , ) = )i i i

We defined Geneij as an indicator matrix that describes the mutation 
type of the donor. We defined Ri as the number of rs2887399 T alleles 
in the ith individual. β is included as an over-dispersion term for the 
likelihood, and Di indicates the sequencing depth of the CHIP mutation. 
We included the following priors:

Gene ~ Normal(0, 0.20)ij

R ~ Normal(0, 0.05)i

U ~ Normal(0, 0.05)i1

We performed inference using the MCMC sampler implementation 
available in the RStan probabilistic programming language53,54.

Single variant association
Single variant association for each variant in the TOPMed Freeze 8 
germline genetic variant callset10 with a MAC > 20 was performed with 
SAIGE43 using the TOPMed Encore analysis server. To identify associa-
tions between rs2887399 and the presence of specific CHIP mutations, 
we used the same methods as our previous report on an analysis set 
of 74,974 individuals, including 4,697 cases and 70,277 controls11. Age, 
genotype inferred sex, the first ten genetic ancestry principal compo-
nents, and study were included as covariates.

We performed SAIGE single variant association analyses on the pas-
sengers including age at blood draw, sex, VAF, study, and the first ten 
genetic ancestry principal components as covariates. We applied an 
inverse normal transformation to the passenger counts. We included 
3,931 CHIP carriers with a single driver mutation and available age at 
blood draw. We declared variants from this analysis as significant if 
their P value was less than 5 × 10−8.
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Estimation of association between rs2887399 genotypes and 
CHIP mutation acquisition
We coded the rs2887399 genotypes as a categorical variable rather 
than a linear quantitative coding to estimate effects separately for the 
heterozygotes and the T-homozygotes using the G-homozygotes as 
the reference level. We estimated the associations using firth logistic 
regression to reduce bias in estimation resulting from low cell counts62, 
and included age, genotype inferred sex and the first ten genetic ances-
try components as covariates.

Fine-mapping of the TCL1A region
We applied the SuSIE63 algorithm to the genotypes included in a 200-kb 
region surrounding TCL1A. We used the same covariates as the single 
variant association analysis. We used the posterior inclusion prob-
abilities and credible sets identified by SuSIE to identify the putative 
causal variant. We used linkage disequilibrium directly calculated on 
the genotypes as opposed to an external reference.

Rare variant analyses
We performed  a rare variant association study from gene-based tests 
on 1,698 cancer-associated genes and their flanking regions using the 
SCANG64 procedure. We identified these genes by downloading the 
targets associated with cancer in Open Targets24, and then filtered to 
include only genes with an association score of 1.0. The most prevalent 
CHIP driver genes were included among this list. We used the inverse 
normal transformed passenger counts as the phenotype with the same 
covariates as before. We specified the minimum size of the grouped 
regions as 30 variants and the maximum as 200. We included all PASS 
variants with a minor allele count greater than 4 and less than 300 
(MAF of 3.7% in the analysed samples). We parsed the genotypes using 
cyvcf2 (ref. 50) and stored them as dgCMatrix using the Matrix65 pack-
age from the R 4.1.2 programming language66.

We set the P value filter to calculate SKAT test statistics at 5 × 10−4. 
We did not group the variants by annotation and we declared regions 
as significant if their P value was less than 2.9 × 10−5 (0.05/1,698). We 
controlled for relatedness by incorporating a sparse kinship matrix 
as estimated by the PC-AiR method from the GENESIS R package67. We 
specified separate residual variance terms for each study to control 
for heterogeneous residual variance. We grouped together all studies 
where the number of analysed samples was less than 200.

Re-analysis of scRNA-seq data
The cell-by-gene count matrix data for each sample from Psaila et al.33, 
generated using the 10X Genomics platform, was downloaded from 
Gene Expression Omnibus (GSE144568). Each matrix was loaded in Seu-
rat68 with the read10X command, and only cells with a minimum of 200 
features were retained using the CreateSeuratObject command. Data 
was log normalized using a scale factor of 10,000 by the NormalizeData 
command. We then used the FindVariableFeatures command with the 
vst selection method and 2,000 features. The data was scaled using 
ScaleData using all genes as features. We then used the RunPCA com-
mand with VariableFeatures identified earlier. For clustering, we used 
FindNeighbors set to the first 10 principal component analysis (PCA) 
dimensions and FindClusters using a resolution of 0.5. We excluded 
samples that did not have a distinct cluster of HSC/MPPs, defined as 
clusters enriched for cells that were CD34+CD38−/loTHY1+. This left 
five healthy marrow samples (id01, id06, id09, id13 and id17) and four 
myoproliferative neoplasm samples (id2, id7, id11 and id14). For each 
of these samples, we assessed the number of cells with TCL1A, TCL1B 
or TCL6 transcripts within the cluster or clusters that contained HSC/
MPPs, as defined above.

Additional preprocessed scRNA-seq data from Velten et al.32, gener-
ated using MutaSeq, was downloaded from https://doi.org/10.6084/
m9.figshare.12382685.v1 as an RDS file. We utilized data from one 

patient with AML (P1) and the healthy control (H1). We then determined 
the number of cells containing TCL1A, TCL1B or TCL6, transcript in the 
pre-leukaemic ‘HSC/MPP’ and pre-leukaemic ‘CD34+ blasts and HSPCs’ 
clusters for the P1 sample and the ‘HSC/MPP’ cluster for the H1 sample, 
in both cases as defined by the original study authors.

Re-analysis of ATAC-seq data
We obtained ATAC-seq data for AML samples as well as healthy controls 
from Corces et al.34 available at Gene Expression Omnibus (GSE74912). 
For our analysis, we used data from HSCs, defined as Lin−CD34+CD38−

CD90+CD10− by the authors, from 4 healthy donors (4983, 6792, 2596 
and 7256), or pHSCs, defined as Lin−CD34+CD38−TIM3−CD99− by the 
authors. For the pHSC samples, we selected three where there were no 
detectable driver mutations in the pHSC compartment (SU336, SU306 
and SU623), two where there were founding DNMT3A mutations only 
(SU444 and SU575), and three where there were founding TET2 muta-
tions only (SU070, SU501 and SU048).

Fastq files for these samples were downloaded, and ATAC-seq data 
analysis was performed as previously described69. In brief, reads were 
trimmed and filtered using fastp and mapped to the hg38 reference 
genome using hisat2 with the --no-spliced-alignment option. Bam 
files were deduplicated using Picard. Only reads mapping to chro-
mosomes 1–22 and the X chromosome were retained; Y chromosome 
reads, mitochondrial reads and other reads were discarded. Genome 
track files were created by loading the fragments for each sample 
into R, and exporting bigwig files normalized by reads in TSSs using 
‘rtracklayer::export’. Coverage files were visualized using the Integra-
tive Genomics Viewer. A counts matrix was created as described previ-
ously34. Peaks were called individually for each sample using MACS2 and 
then iteratively merged into a union peak set of high confidence disjoint 
fixed width peaks of 500 bp encompassing all peaks in all samples. Then, 
bias-corrected Tn5 insertions in each sample overlapping each peak 
location were counted, and the resulting counts matrix was imported 
into DESeq2 for statistical analysis. For differential accessibility analy-
sis, we compared all peaks in the three TET2-mutant samples to the 
seven control samples using the DESeq function in the DESeq2 (ref. 70) 
R package (https://bioconductor.org/packages/release/bioc/html/
DESeq2.html). Adjusted P values were calculated on the full set of peaks, 
and those with a FDR q value of <0.10 were retained for further analysis. 
The peaks that overlap with TSSs of protein coding genes are supplied 
in Supplementary Table 13.

CRISPR–Cas9 editing of CD34+ human HSPCs
CD34+ HSPCs from adult donors were purchased from the Coopera-
tive Center of Excellence in Hematology (CCEH) at the Fred Hutch 
Cancer Research Center, Seattle, USA. TCL1A rs2887399 geno-
typing was performed using ThermoFisher SNP assay (assay ID: 
C__15842295_20). CD34+ cells were thawed and cultured in HSPC expan-
sion medium (StemSpanII + 10% CD34+ expansion supplement + 0.1% 
penicillin-streptomycin) for 48 h before CRISPR editing. Editing of 
AAVS, TET2, DNMT3A and ASXL1 was performed by electroporation 
of Cas9 RNP. For each combination of rs2887399 genotype and gRNA 
(Supplementary Table 22), 100,000 cells were incubated with 3.2 μg 
Synthego synthetic sgRNA guide and 8.18 μg of IDT Alt-R Streptococ-
cus pyogenes Cas9 Nuclease V3 for 15 min at room temperature before 
electroporation. CD34+ cells were resuspended in 18 μl of Lonza P3 
solution and mixed with the ribonucleoprotein complex, and then 
transferred to Nucleocuvette strips for electroporation with program 
DZ-100 (Lonza 4D Nucleofector). Immediately following electropora-
tion, each condition of 100,000 cells was transferred to 2 ml of HSPC 
expansion medium and allowed to recover for 24 h. CRISPR editing 
efficiency was measured using Sanger sequencing and ICE analysis. 
Statistical methods to predetermine sample sizes were not used and 
investigators were not blinded to experimental conditions for all experi-
ments using human HSPCs.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144568
https://doi.org/10.6084/m9.figshare.12382685.v1
https://doi.org/10.6084/m9.figshare.12382685.v1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74912
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html


ATAC-seq
Twenty-four hours after electroporation, Lin−CD34+CD38−CD45RA− 
cells were sorted from the electroporated CD34+ cells using a BD FACS 
Aria III. Cells were allowed to culture for 5–7 days in HSPC medium 
before 40,000 cells were collected, and bulk Omni-ATAC69 was per-
formed on them. In brief, cells were lysed with ATAC resuspension 
buffer containing 0.1% NP-40, 0.1% Tween-20, and 0.01% digitonin for 
3 min, and then the transposition was performed for 30 min at 37 C 
using 100 nM of Illumina Tagment DNA TDE1 Enzyme and Buffer Kit 
per 50,000 cells. The fragmented DNA was then cleaned up using a 
Zymo DNA Clean and Concentrator-5 Kit (D4014). The transposed 
fragments were amplified and indexed using NEBNext 2× Master Mix. 
The final PCR product was purified using the Zymo DNA Clean and 
Concentrator-5 Kit. Prior to sequencing, the quality of the libraries was 
evaluated via DNA High Sensitivity Bioanalyzer assays. The sequenc-
ing was performed using 2 × 75 bp reads on an Illumina NextSeq550 
instrument using the High Output Kit.

ATAC-seq data analysis was performed as described above. In brief, 
reads were trimmed and filtered using fastp and mapped to the hg38 
reference genome using hisat2 (ref. 71) with the --no-spliced-alignment 
option. BAM files were deduplicated using Picard. Only reads mapping 
to chromosomes 1–22 and X chromosome were retained—Y chromo-
some reads, mitochondrial reads and other reads were discarded. 
Genome track files were created by loading the fragments for each 
sample into R, and exporting bigwig files normalized by reads in TSSs 
using ‘rtracklayer::export’. Coverage files were visualized using the 
Integrative Genomics Viewer. ATAC-seq tracks were normalized based 
on counts in TSS and were visualized using the same scale for all tracks 
in Integrated Genome Viewer. For the tracks shown in Extended Data 
Fig. 6b, the same experimental strategy was used as above, except cells 
were sorted based on the markers CD34+CD38−CD45RA−Lin− after seven 
days in culture, from which point the Omni-ATAC protocol was followed. 
We used the top 1,000 most accessible TSSs genome-wide to perform 
normalization. We devised this strategy based on our observation that 
some inaccessible TSSs were prone to noise, which confounded the 
normalization. Differential accessibility analysis was done as described 
above except the TCL1A TSS peak was manually defined as the 300-base 
pair region around rs2887399 (chr14:95714209-95714508, and DESeq2 
was used in a model that included edit (AAVS1, TET2 or DNMT3A) and 
number of rs2887399 T alleles (0, 1 or 2). Results for nominally signifi-
cant TSS peaks in the TET2-edited versus AAVS1-edited samples can be 
found in Supplementary Table 14.

Liquid culture expansion assay
Lin−CD34+CD38−CD90+CD45RA− cells were sorted on a BD FACS Aria 
III from the electroporated CD34+ cells. All cells were collected and 
stained with the extracellular HSPC marker panel in 100 μl PBS + 2% 
FBS + 1 mm EDTA (Supplementary Table 23). For each replicate, 500–
1,000 Lin−CD34+CD38−CD90+CD45RA− cells were sorted into 100 μl 
HSC expansion medium and cells were plated into a 96-well plate. The 
wells on the edges of the 96-well plate were filled with water to keep the 
cultures hydrated. Four days post sort, another 100 μl of HSC expansion 
medium was added to each well. Ten days post sort, the samples were 
transferred from the 96-well plate to a 48-well plate and an additional 
400 μl of HSPC expansion medium was added. Fourteen days post 
sort, the cells were collected and live cells were counted using trypan 
blue and haemocytometer. Additionally, the cells were stained with the 
extracellular HSPC marker panel, and flow cytometry analysis was per-
formed using FlowJo v10.8.1. Absolute number of HSC/MPPs (defined 
as Lin−CD34+CD38−CD45RA−) and CD45RAlo progenitors (defined as 
Lin−/loCD34+CD38−CD45RAlo) were determined by multiplying the total 
cell count at 14 days by the percentage of cells in each compartment 
as determined by flow cytometry. Example gating for the HSC stain is 
shown in Supplementary Fig. 4a.

Flow cytometry for TCL1A staining
Anti-human TCL1A antibody clone eBio1-21 was obtained from Ther-
moFisher. The specificity of the antibody was assessed by staining 
NALM6 cells that had been CRISPR-edited for complete loss of TCL1A 
with the antibody, which confirmed only a very low level of non-specific 
binding.

To assess for TCL1A expression in edited human CD34+ HSPCs, cells 
in HSPC expansion medium were grown using culture conditions as 
described above, then collected and intracellularly stained 11 days 
following electroporation. Cells were first stained with the Live/Dead 
and extracellular surface markers simultaneously for 30 min in the 
dark on ice. After a PBS wash, cells were stained with 100 μl of IC fixa-
tion buffer for 30 min in the dark at room temperature. Cells were 
then washed twice with 1× permeabilization buffer. Next, cells were 
resuspended in 100 μl of 1× permeabilization buffer, and blocked with 
2 μl of goat serum and 2.5 μl of TruStain FcX for 15 min in the dark at 
room temperature. Next, 1 μg of e450 antibodies (anti-TCL1A or isotype 
control) was added to each sample tube and stained for 30 min in the 
dark at room temperature (Supplementary Table 24). Cells were then 
washed twice with 1× permeabilization buffer and then resuspended 
in PBS before flow cytometry was performed. Analysis was performed 
using FlowJo v10.8.1.

Lentivirus plasmids for TCL1A knockdown and expression
For knockdown of TCL1A, we obtained plasmids for 4 separate shR-
NAs targeting TCL1A, as well as scramble control shRNA, from Origene 
(TL301172V). The shRNA constructs were validated to knockdown TCL1A 
protein by flow cytometry in NALM6 cells (from R. Levy). NALM6 cells 
were tested for mycoplasma prior to use and not further authenticated.

An insert containing the TCL1A coding region followed in frame with 
GFP (TCLA1-T2A linker-GFP) under the control of mammalian EEF1A1 
promoter, as well as a control sequence composed of GFP under the 
EEF1A1 promoter, was synthesized by Gene Universal. The insert was 
cloned into a second-generation lentivirus backbone, adapted from the 
Addgene vector pMH0001, using enzymatic cloning. Briefly both the 
insert and backbone were digested with MluI and SbfI enzymes (NEB) 
and ligated using the T4 ligase (NEB). NEB DH5a competent bacteria 
were transformed with the ligation product. The transformed bacteria 
were screened by Ampilicin resistance and grown in liquid culture in 
LB medium to amplify the plasmid. Maxiprep plasmid purification 
(Macherey-Nagel NucleoBond Xtra Maxi) was performed to obtain the 
final purified plasmid used for lentivirus production.

Lentivirus production
Plasmids were transfected into 293T HEK cells (ATCC CRL-3216) at 
roughly 80% confluence in 10 cm tissue culture plates coated with 
poly-d-lysine using Lipofectamine 3000. 293T HEK cells were not 
further authenticated or tested for mycoplasma. The lipofectamine 
medium was exchanged 16 h later, and the viral supernatant was  
collected at 72 h post-transfection. The collected viral supernatant 
was filtered via a 0.45 μm filtration unit, and concentrated using the 
LentiX concentrator (Takara) for 2 h at 4 C and then spun down at 1,500g 
for 45 min at 4 C. The concentrated supernatant was subsequently 
aliquoted, flash frozen and stored at −80 °C until use.

Combined CRISPR and shRNA assay
CD34+ cells were thawed and cultured in HSPC expansion medium 
(StemSpanII + 10% CD34+ expansion supplement + 0.1% penicillin- 
streptomycin) for 48 h before CRISPR editing. Editing of AAVS, TET2, 
DNMT3A and ASXL1 was performed by electroporation of Cas9 RNP. 
For each combination of rs2887399 genotype and gRNA, 100,000 cells 
were incubated with 3.26 μg of Synthego synthetic sgRNA guide and 
8.332 ug of IDT Alt-R S. pyogenes Cas9 Nuclease V3 for 15 min at room 
temperature before electroporation. CD34+ cells were resuspended 
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in 18 μl Lonza P3 solution and mixed with the ribonucleoprotein  
complex, and then transferred to Nucleocuvette strips for electropo-
ration with program DZ-100 (Lonza 4D Nucleofector). Immediately 
following electroporation, each condition of 500,000 cells was 
transferred to 2 ml HSPC expansion medium and allowed to recover 
for 8 h. Later that same day, 250,000 CRISPR-edited cells were col-
lected, spun down, and resuspended in a final volume of HSPC len-
tivirus medium (StemSpanII + 10% CD34+ expansion supplement + 
0.1% penicillin-streptomycin + 10 μM prostaglandin E2 + 100 ng μl−1 
poloxamer 407) with virus added at a multiplicity of infection (MOI) 
of 20. Cells were plated in a 96-well U-bottom plate for 16 h. shRNA-A 
and the scramble shRNA from Origene TL301172V were used for this 
experiment. Following a 16-h incubation, cells were washed in PBS, 
and then plated in 2 ml HSPC expansion medium. After 72 h, previ-
ously described liquid culture expansion assay was done on sorted 
Lin−CD34+CD38−CD45RA−GFP+ cells, with assessment of counts and 
flow cytometry after 14 days.

Lentiviral TCL1A expression in human HSPCs
CD34+ cells were thawed and cultured in HSPC expansion medium 
(StemSpanII + 10% CD34+ expansion supplement + 0.1% penicillin- 
streptomycin) for 48 h before lentivirus transduction. In total, 750,000 
cells were collected, spun down, and resuspended in a final volume 
of HSPC lentivirus medium (StemSpanII + 10% CD34+ expansion 
supplement + 0.1% penicillin-streptomycin + 10 μM prostaglandin  
E2 + 100 ng μl−1 poloxamer 407) with virus added at an MOI of 100. Cells 
were plated in a 96-well U-bottom plate for 16 h. eGFP control was pur-
chased from Origene (PS100093V) or produced in house as described 
above, and the TCL1A-eGFP nucleotide was purchased from Origene 
(RC204243L4V) or produced in house as described above. Following 
16-h incubation, cells were washed in PBS, and then plated in 2 ml HSPC 
expansion medium. After 72 h, previously described liquid culture 
expansion assay was done using sorted Lin−CD34+CD38−CD45RA−GFP+ 
cells. After 14 days, cells were collected and assessed for HSC/MPP 
frequency using flow cytometry as previously described. The total 
HSC/MPP count was determined by multiplying the percentage of 
live cells that were in the HSC/MPP gate by the total live cell count for 
each replicate.

After 14 days of in vitro liquid culture expansion, 800 live cells were 
sorted, resuspended in 1.1 ml Methocult + 0.1% penicillin-streptomycin, 
and plated in 35 mm dishes. Eight 35 mm dishes were placed in one 
245 × 245 mm square dish along with four open 35 mm dishes of water 
and one 120 mm dish of water. After 14 days in Methocult, the number 
of colony-forming units was counted. The total colony-forming unit 
count in the day 14 liquid culture was determined by multiplying the 
number of colony-forming units in each replicate by the total live cell 
count after 14 days of liquid culture and dividing by 800.

For cell cycle analysis, sorted HSCs were cultured for 10 days in liquid 
culture expansion medium. Cells were first stained with the Alexa-
700 Live/Dead and extracellular surface markers simultaneously 
for 30 min in the dark on ice (Supplementary Table 25). After a PBS 
wash, cells were stained with 100 μl of IC fixation buffer for 30 min in 
the dark at room temperature. Cells were then washed twice with 1× 
permeabilization buffer. Next, cells were resuspended in 100 μl of 1× 
permeabilization buffer, and blocked with 2 μl of goat serum for 15 min 
in the dark at room temperature. Cells were then washed twice with 1× 
permeabilization buffer and then resuspended in 75 μl of 1 μg ml−1 DAPI 
diluted in 1× permeabilization buffer. After 10 min, 75 μl PBS was added, 
and then flow cytometry was performed. HSC/MPPs were defined as 
CD34+CD38−Lin−. Example gating for the DAPI HSPC analysis is shown 
in Supplementary Fig. 4b.

Mouse bone marrow competitive transplant
Mice were obtained from The Jackson Laboratory and housed at 
the Research Animal Facility of the Stanford School of Medicine. All 

experiments used female mice. The mice were housed under a 12-h 
light:12-h dark cycle with dark hours from 18:30–06:30 and housed 
at 20–23 °C under 40–60% humidity. All animal procedures were per-
formed in accordance with protocols approved by Stanford University’s 
Administrative Panel on Laboratory Animal Care. Statistical methods 
to predetermine samples size were not used and investigators were 
not blinded to experimental conditions.

Bone marrow from 10-week-old female CD45.2+ C57BL/6 mice was 
collected, and c-Kit cells were enriched for using the EasySep Mouse 
cKIT Positive Selection Kit (18757) according to the manufacturer’s 
protocol. 2.8 million c-KIT enriched cells were transduced with 45 μl 
of the previously described control-eGFP or TCL1A-eGFP and cultured 
overnight in U-bottom plates in mouse HSC transduction medium 
(StemSpan II, 10 ng ml−1 SCF, 100 ng ml−1 TPO, 10 μM prostaglandin 
E2, 100 ng μl P407, 0.1% penicillin-streptomycin) with an expected 
transduction efficiency of ~10%. Following overnight transduction, 
transduced c-KIT cells were washed with PBS and admixed with fresh 
CD45.2+GFP− competitor whole bone marrow at a 1:3 ratio to achieve 
chimeric donor bone marrow graft. Sorting of GFP+ cells pre-transplant 
was not conducted because anecdotal evidence from several labora-
tories suggests that culture of transduced HSCs for >24 h diminishes 
their potency for in vivo reconstitution. Post hoc analysis of stored 
aliquots from the input cells confirmed ~4% of Lin− cells were GFP+ 
for both conditions, mimicking a CHIP clone of ~2% VAF (Extended 
Data Fig. 9a).

For the bone marrow transplant, recipient 9-week-old female 
CD45.1+ C57BL/6 mice were lethally irradiated with one 950 cGy dose 
of γ-irradiation. Post-irradiation, recipients were transplanted with 
1 × 106 of the previously described chimeric bone marrow in suspen-
sion via retro-orbital injection, n = 8 per group. Following transplan-
tation, recipient mice were fed with Envigo Uniprim diet for four  
weeks.

The proportion of GFP+ donor cells was tracked by collecting 100 μl 
of peripheral blood retro-orbitally at 4 weeks, 7 weeks, 12 weeks and 
20 weeks post-transplant. Following RBC lysis, peripheral blood was 
stained with 100 μl of the mouse peripheral blood antibody cocktail 
(Supplementary Table 26). Twenty-two weeks post-transplant, mice 
were euthanized and bone marrow was collected from femurs. Follow-
ing RBC lysis, bone marrow was stained with 50 μl of the mouse bone 
marrow antibody cocktail to determine the proportion of GFP+ HSC or 
MPP donor cells (Supplementary Table 27).

Flow cytometry gating schema are shown in Supplementary Fig. 5a,b. 
Flow cytometry analysis was performed using FlowJo v10.8.1.

CITE-seq cell preparation and 10X workflow
Human CD34+ cells were thawed and cultured in HSPC expansion medium 
(StemSpanII + 10% CD34+ expansion supplement + 0.1% penicillin- 
streptomycin) for 48 h before lentiviral transduction. Seventy-two 
hours after lentivirus addition, Lin−CD34+CD38−CD45RA−GFP+ were 
sorted and plated. Seven days after sort, 10X 3′ v3.1 with feature bar-
coding was performed. 60,000–120,000 cells were collected and 
resuspended in 50 μl of PBS + 1% BSA. Cells were then blocked with 
5 μl TruStain FX for 10 min. Next, cells were stained with 0.5 μl of each 
TotalSeq-B antibody (CD34, CD38, CD45RA, CD90, CD49f, CD35, 
CD11a, CD59 and CD117) for 30 min. Following 4 washes with PBS + 
1% BSA, 10,000 cells were loaded onto a Chromium Next GEM Chip 
G. GEM generation and barcoding, post GEM–RT cleanup and cDNA 
amplification, 3′ gene-expression library construction, and cell surface 
protein library construction were performed as described at https://
support.10xgenomics.com/single-cell-gene-expression/index/doc/
user-guide-chromium-single-cell-3-reagent-kits-user-guide-v31-che
mistry-dual-index-with-feature-barcoding-technology-for-cell-surface- 
protein. Gene-expression and cell surface protein libraries were pooled 
together at a ratio of 4:1 and sequenced on an Illumina NovaSeq S4 
flowcell (Supplementary Table 28).

https://support.10xgenomics.com/single-cell-gene-expression/index/doc/user-guide-chromium-single-cell-3-reagent-kits-user-guide-v31-chemistry-dual-index-with-feature-barcoding-technology-for-cell-surface-protein
https://support.10xgenomics.com/single-cell-gene-expression/index/doc/user-guide-chromium-single-cell-3-reagent-kits-user-guide-v31-chemistry-dual-index-with-feature-barcoding-technology-for-cell-surface-protein
https://support.10xgenomics.com/single-cell-gene-expression/index/doc/user-guide-chromium-single-cell-3-reagent-kits-user-guide-v31-chemistry-dual-index-with-feature-barcoding-technology-for-cell-surface-protein
https://support.10xgenomics.com/single-cell-gene-expression/index/doc/user-guide-chromium-single-cell-3-reagent-kits-user-guide-v31-chemistry-dual-index-with-feature-barcoding-technology-for-cell-surface-protein
https://support.10xgenomics.com/single-cell-gene-expression/index/doc/user-guide-chromium-single-cell-3-reagent-kits-user-guide-v31-chemistry-dual-index-with-feature-barcoding-technology-for-cell-surface-protein


Computational analysis of scRNA-seq sequencing data
The BCL files were demultiplexed using eight base pair 10X sample 
indexes and cellranger mkfastq to generate paired-end FASTQ. We 
ran cellranger count to align the reads to the hg38 reference genome 
from GenBank using STAR72 aligner as well as perform filtering, bar-
code counting, and UMI counting. The alignment results were used 
to quantify the expression level of human genes and generation of 
gene-barcode matrix.

Each sample’s cellranger matrix was then loaded in a SeuratOb-
ject_4.1.0 using Seurat68 (version 4.1.1, https://github.com/satijalab/seu-
rat). Low-quality cells, doublets and potential dead cells were removed 
according to the percentage of mitochondrial genes and number of 
genes and UMIs expressed in each cell (nFeature_RNA > 200 & nFea-
ture_RNA < 10000 & nCount_RNA > 2500 & percent.mt < 10). Clean 
count matrices from each sample were then combined using Seurat’s 
merge function. The merged gene-expression data was normalized using 
sctransform based normalization while removing confounding vari-
ables, percentage of mitochondrial genes and sample origin. Then, cell 
cycle scores were assigned using Seurat’s CellCycleScoring function. The 
difference between the G2M and S phase scores was then calculated and 
regressed out using sctransform based normalization to minimize dif-
ferences due to differences in cell cycle phase among proliferating cells. 
The cell surface feature output was normalized using centred log-ratio 
(CLR) normalization, computed independently for each feature.

The four datasets were integrated using Harmony (https://github.
com/immunogenomics/harmony) on sctransform normalized gene 
counts to group cells by cell type while correcting for sample origin. 
Dimensionality reduction via PCA and UMAP embedding was per-
formed on the integrated dataset. Identities of the cell clusters were 
determined using canonical RNA cell type markers and cell surface 
feature expression patterns. HSC/MPP clusters were identified by stain-
ing positively for CD34 and CD49f, and negatively for CD38, CD45RA 
and CD11a. The common myeloid progenitor cluster was identified by 
staining positively for CD34 and CD38, and negatively for CD45RA and 
CD49f. The granulocyte macrophage progenitor cluster was identified 
by staining positively for CD34, CD38 and CD45RA, and negatively for 
CD49f. The difference between the proportion of cells in HSC/MPP1–4 
clusters between control-eGFP and TCL1A-eGFP transduced cells was 
calculated by a proportion test using the Single Cell Proportion Test R 
package (https://github.com/rpolicastro/scProportionTest). To recon-
struct the pseudotime trajectory of the HSC/MPP and CMP clusters, 
Monocle 3 pseudotime analysis was performed using the central node 
of the HSC/MPP1 Cluster as the root node (https://satijalab.org/sig-
nac/articles/monocle.html). Differential gene-expression analysis 
of TCL1A-eGFP versus control-eGFP HSC/MPPs was performed using 
the FindMarkers function in Seurat with the LR test and rs2887399 
genotype as the latent variable, and with min.pct = 0.05 and logfc.
threshold = 0.1. Differential gene-expression analysis of HSC/MPP4 
versus HSC/MPP1 was performed using the FindMarkers function in 
Seurat with no thresholds for min.pct or logfc.threshold. Gene-set 
enrichment analysis (GSEA) was performed using the fgsea package 
(https://github.com/ctlab/fgsea) and the REACTOME gene sets using 
the following parameters for the fgsea function: nperm = 1000, score-
Type = "std", minSize = 5. Results of differential expression analysis and 
GSEA can be found in Supplementary Tables 17 and 18.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Individual whole-genome sequence data for TOPMed whole genomes, 
individual-level harmonized phenotypes and the CHIP variant call 

sets used in this analysis are available through restricted access via 
the dbGaP TOPMed Exchange Area available to TOPMed investiga-
tors. Controlled-access release to the general scientific community 
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | PACER Estimates Clonal Expansion Rate. A. The 
passenger counts are enriched by 54% (95% CI: 51%-57%) after adjusting for age 
and study using a negative binomial regression. The different colors in the 
density plots correspond to quartiles of the marginal probability distributions. 
As the density estimates are smoothed, the underlying data points are indicated 
with hash marks. B. The distributions of passenger counts are stratified by the 
number of CHIP driver variants acquired. The different colors in the density 
plots correspond to quartiles of the marginal probability distributions. C. The 
observed clonal expansion rates (dVAFdT), as expressed in the change in 
variant allele frequency (VAF) over time (years), were associated with increased 
PACER fitness estimates in 55 CHIP carriers from the Women’s Health Initiative. 
The PACER fitness estimates have been inverse normal transformed. D. The 

posterior inclusion probabilities (PIP) as estimated by SuSIE63 are plotted on 
the y-axis, and the genomic position of a 0.8 Mb region including TCL1A is 
plotted on the x-axis. The linkage disequilibrium (LD) estimates are plotted on 
a color scale and are estimated on the genotypes used for association analyses. 
E. Rare variant analyses were performed using the SCANG46 rare variant scan 
procedure including all variants with a minor allele count less than 300. 
Identified rare variant windows are plotted as gray rectangles where the width 
corresponds to the size of the genomic region and the height corresponds to 
the pvalue of the SCANG64 test statistic for the window. F. Rare variant analyses 
were performed including the rs2887399 genotypes as covariate. Hypothesis 
testing was performed using the SCANG rare variant scan procedure. G. Multiz 
alignments across multiple species are shown for the TCL1A locus.
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Extended Data Fig. 2 | GWAS Implicates rs2887399 as a Modifier of Clonal 
Expansion Rate. A. The distributions of the four conditions – DNMT3A and 
TET2 mutant clones stratified by homozygous genotype of rs2887399. The 
y-axis indicates the density of the distributions and the x-axis indicates the 
log10 founding censored passengers, which are the simulated equivalent to the 
singleton mutations observed in the real data analysis. Simulated DNMT3A 
mutations out-compete TET2 when rs2887399 is set to the protective T/T allele 
even though its fitness is unchanged by rs2887399. B. The top panel includes 

the -log10 pvalues from both the PACER GWAS and TCL1A cis-eQTLs in whole 
blood from GTEx v829. The GWAS p-values are estimated with SAIGE. In the 
bottom panel, posterior probability of colocalization from COLOC30 identifies 
rs2887399 as the likely shared causal variant. C. UMAP plot of scRNA-seq data 
from immune cells in the Human Cell Atlas31. TCL1A expression is highlighted 
on the bottom plot. UMAP plot was generated in the EMBL-EBI Single Cell 
Expression Atlas.
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Extended Data Fig. 3 | Chromatin Accessibility and Transcript Expression 
of TCL1A. A. Quantification of fraction of HSC/MPPs expressing TCL1A 
transcripts in patients with TET2 or ASXL1 driven acute myeloid leukemia (AML) 
or myeloproliferative neoplasm (MPN) compared to healthy donors. Data is 
from single-cell RNA sequencing generated in Psaila33 et al. and Velten32 et al.  
B. ATAC-sequencing tracks of the TCL1A locus near rs2887399 in HSCs from 
healthy donors (row 1-4), pre-leukemic hematopoietic stem cells (pHSCs) from 
patients with AML but no detected driver mutations (rows 5-7), in pHSCs with 

TET2 mutations (rows 8-10), and pHSCs with DNMT3A mutations (rows 11-12). 
Data is from Corces et al.34. Vertical dashed line indicates location of the 
rs2887399 SNP. C. ATAC-sequencing tracks of the TCL6-TCL1A locus in HSCs 
from healthy donors (row 1), pre-leukemic hematopoietic stem cells (pHSCs) 
from patients with AML but no detected driver mutations (rows 2-3), pHSCs 
with DNMT3A mutations (rows 4-5), and in pHSCs with TET2 mutations (rows 
6-7). Amino acid change and variant allele fraction (VAF) for the driver 
mutations are shown. Data is from Corces et al.34.
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Extended Data Fig. 4 | Schematic of rs2887399 Effect on TET2 Clonal 
Expansion. Proposed model for clonal advantage due to mutations in TET2.  
In cells with the rs2887399 REF/REF genotype, loss of TET2 function leads to an 
accessible TCL1A locus, aberrant TCL1A RNA and protein expression in 
hematopoietic stem cells (HSC’s) and multi-potent progenitors (MPP’s), and 

subsequent clonal expansion. The presence of rs2887399 ALT alleles 
diminishes the TET2 clonal expansion phenotype by limiting TCL1A locus 
accessibility and downstream protein expression. Figure created with 
BioRender under a paid license.
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Extended Data Fig. 5 | CRISPR Editing Efficiency. A. ICE analysis of Sanger 
traces to determine targeted CRISPR editing efficiency. Bar plots display 
percent of CD34+ CD38− CD45RA− cells with indel formation in gene of interest. 
These cells were used for the OMNI-ATAC and intracellular TCL1A flow assays. 

B. ICE analysis of Sanger traces to determine targeted CRISPR editing efficiency. 
Bar plots display percent of CD34+ CD38− CD45RA− cells with indel formation 
in gene of interest. These cells were used for the 14-day expansion assay.
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Extended Data Fig. 6 | ATAC Sequencing Tracks of TCL1A. A. ATAC- 
sequencing tracks illustrating chromatin accessibility at rs2887399 in TET2 or 
DNMT3A-edited HSC/MPPs cultured for 5 days from donors of the GG, GT, and 
TT genotypes. Red line indicates location of rs2887399. TET2 edited samples 
are the same as in Fig. 4, shown here for comparison. B. ATAC-sequencing 

tracks illustrating chromatin accessibility at rs2887399 in AAVS, TET2 or 
DNMT3A-edited HSC/MPPs cultured for 7 days from donors of the GG and TT 
genotypes, and then sorted for CD34hi CD38− CD45RA− Lin− cells prior to 
nuclei preparation. Red line indicates location of rs2887399.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Interaction of CHIP Mutations and rs2887399 in 
human HSPC phenotypes. A. Representative intracellular flow plots of TCL1A 
protein expression in edited HSC/MPPs from each rs2887399 donor after 11 
days in culture. B. Quantification of Lin−/lo CD34+ CD38− CD45RAlo HSPCs 
(CD45RAlo HSPCs) after 14 days of in vitro expansion stratified by edited gene 
and rs2887399 genotype. Results of a linear regression model for the effect of 
edited gene (referent to AAVS1), rs2887399 genotype (referent to GG), and the 
interaction term of edited gene with rs2887399 genotype are presented below. 
Unadjusted p-values from two-sided tests are reported. n = 4 for each group.  

C. Ratio of CD34+CD45RA- cells to CD34- cells after 14 days of in vitro expansion 
stratified by edited gene and rs2887399 genotype. Results of a linear regression 
model for the effect of edited gene (referent to AAVS1), rs2887399 genotype 
(referent to GG), and the interaction term of edited gene with rs2887399 
genotype are presented below. The horizontal line in each box indicates the 
median, the tops and bottoms of the boxes indicate the interquartile range, and 
the top and bottom error bars indicate maxima and minima, respectively. 
Unadjusted p-values from two-sided tests are reported. n = 4 for each group.
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Extended Data Fig. 8 | Validation of TCL1A shRNA and Expression 
Lentivirus. A. Histogram of TCL1A-DAPI in wild-type, TCL1A CRISPR knockout, 
and TCL1A shRNA knockdown in NALM-6 cell line. B. Histogram of TCL1A-DAPI 

in human HSC/MPPs transduced with TCL1A-eGFP lentivirus or TET2-edited 
HSC/MPPs. MFI = geometric mean fluorescence intensity.
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Extended Data Fig. 9 | TCL1A Expression Promotes HSC Fitness in Mice.  
A. Post-hoc analysis of percent GFP+ cells in the lineage negative fraction of the 
input cell mixture used for transplant. B. GFP+ chimerism over 20 weeks 
post-transplant as a fraction of total donor white blood cells. Shown are mean 
percent GFP+ cells and error bars represent standard errors for each time point. 
Hypothesis testing was performed with a two-sided Wilcoxon rank sum test and 

unadjusted p-values are shown above each time point. n = 8 for each group.  
C. Percent GFP+ cells in donor HSC/MPP subsets at 22 weeks post-transplant. 
The horizontal line in each box indicates the median, the tops and bottoms of 
the boxes indicate the interquartile range, and the top and bottom error bars 
indicate maxima and minima, respectively.  Unadjusted p-values obtained from 
two-sided Wilcoxon rank sum tests are reported. n = 8 for each group.
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Extended Data Fig. 10 | CITE-seq of TCL1A Expressing Human HSPCs. 
 A. UMAP feature plots of Antibody Derived Tags (ADTs) for cell surface markers 
for HSPC identification. B. UMAP clustering of HSC/MPP populations colored 
by cell subtype clusters next to UMAP clustering of HSC/MPP populations 

colored by Monocle Pseudotime values. C. Stacked bar plot of percent of cells 
in each cell cycle phase as determined by Seurat cell cycle scoring module for 
each cell cluster. D. UMAP feature plot of select stress response and FOXO 
target genes.
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Extended Data Fig. 11 | Effect of TCL1A Expression on Human HSC/MPP 
Phenotypes. A. Normalized enrichment scores (NES) of REACTOME pathways 
upregulated in HSC/MPP cluster 4 compared to HSC/MPP cluster 1 and filtered 
for those with FDR < 0.1 and NES > 1. Pathways printed in blue contain interferon 
response genes and pathways printed in red contain FOXO response genes.  

B. Stacked bar plot of all clusters in each analyzed sample dataset as a 
percentage of total cells in that sample. G/G or T/T refers to the genotype at 
rs2887399 in the donor. C. Stacked bar plot of absolute counts for each HSC/
MPP cluster from each sample. Counts are shown as number of output cells at 
Day 7 per 1000 HSC/MPPs plated at Day 0.
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