28 research outputs found

    Quorum Sensing Protects Pseudomonas aeruginosa against Cheating by Other Species in a Laboratory Coculture Model

    Get PDF
    This is the published version. Copyright © 2015, American Society for Microbiology. All Rights Reserved.Many species of bacteria use a cell-cell communication system called quorum sensing (QS) to coordinate group activities. QS systems frequently regulate the production of exoproducts. Some of these products, such as proteases, are “public goods” that are shared among the population and vulnerable to cheating by nonproducing members of the population. Because the QS system of the opportunistic pathogen Pseudomonas aeruginosa regulates several public goods, it can serve as a model for studying cooperation. Bacteria also commonly regulate antimicrobial production through QS. In this study, we focused on the hypothesis that QS-regulated antimicrobials may be important for P. aeruginosa to protect against cheating by another bacterial species, Burkholderia multivorans. We assessed laboratory cocultures of P. aeruginosa and B. multivorans and investigated the importance of three P. aeruginosa QS-regulated antimicrobials, hydrogen cyanide, rhamnolipids, and phenazines, for competition. We found that P. aeruginosa dominates cocultures with B. multivorans and that the three antimicrobials together promote P. aeruginosa competitiveness, with hydrogen cyanide contributing the greatest effect. We show that these QS-regulated antimicrobials are also critical for P. aeruginosa to prevent B. multivorans from cheating under nutrient conditions where both species require a P. aeruginosa quorum-regulated protease for growth. Together our results highlight the importance of antimicrobials in protecting cooperating populations from exploitation by other species that can act as cheaters

    Bacterial Quorum Sensing and Microbial Community Interactions

    Get PDF
    Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of “synthetic ecological” models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections

    RhIR-regulated acyl-homoserine lactone quorum sensing in a cystic fibrosis isolate of Pseudomonas aeruginosa

    Get PDF
    The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of airway infection in cystic fibrosis (CF) patients. P. aeruginosa employs several hierarchically arranged and interconnected quorum sensing (QS) regulatory circuits to produce a battery of virulence factors such as elastase, phenazines, and rhamnolipids. The QS transcription factor LasR sits atop this hierarchy and activates the transcription of dozens of genes, including that encoding the QS regulator RhIR. Paradoxically, inactivating lasR mutations are frequently observed in isolates from CF patients with chronic P. aeruginosa infections. In contrast, mutations in rh1R are rare. We have recently shown that in CF isolates, the QS circuitry is often rewired such that RhIR acts in a LasR-independent manner. To begin understanding how QS activity differs in this rewired background, we characterized QS activation and RhIR-regulated gene expression in P. aeruginosa E90, a LasR-null, RhIR-active chronic infection isolate. In this isolate, RhIR activates the expression of 53 genes in response to increasing cell density. The genes regulated by RhIR include several that encode virulence factors. Some, but not all, of these genes are present in the QS regulon described in the well-studied laboratory strain PAO1. We also demonstrate that E90 produces virulence factors at similar concentrations as PAO1, and in E90, RhIR plays a significant role in mediating cytotoxicity in a three-dimensional lung epithelium cell model. These data illuminate a rewired LasR-independent RhIR regulon in chronic infection isolates and suggest further investigation of RhIR as a possible target for therapeutic development in chronic infections. IMPORTANCE Pseudomonas aeruginosa is a prominent cystic fibrosis (CF) pathogen that uses quorum sensing (QS) to regulate virulence. In laboratory strains, the key QS regulator is LasR. Many isolates from patients with chronic CF infections appear to use an alternate QS circuitry in which another transcriptional regulator, RhIR, mediates QS. We show that a LasR-null CF clinical isolate engages in QS through RhIR and remains capable of inducing cell death in an in vivo-like lung epithelium cell model. Our findings support the notion that LasR-null clinical isolates can engage in RhIR QS and highlight the centrality of RhIR in chronic P. aeruginosa infections

    More than Simple Parasites: the Sociobiology of Bacteriophages and Their Bacterial Hosts

    No full text
    Bacteria harbor viruses called bacteriophages that, like all viruses, co-opt the host cellular machinery to replicate. Although this relationship is at first glance parasitic, there are social interactions among and between bacteriophages and their bacterial hosts. These social interactions can take on many forms, including cooperation, altruism, and cheating. Such behaviors among individuals in groups of bacteria have been well described. However, the social nature of some interactions between phages or phages and bacteria is only now becoming clear.Bacteria harbor viruses called bacteriophages that, like all viruses, co-opt the host cellular machinery to replicate. Although this relationship is at first glance parasitic, there are social interactions among and between bacteriophages and their bacterial hosts. These social interactions can take on many forms, including cooperation, altruism, and cheating. Such behaviors among individuals in groups of bacteria have been well described. However, the social nature of some interactions between phages or phages and bacteria is only now becoming clear. We are just beginning to understand how bacteriophages affect the sociobiology of bacteria, and we know even less about social interactions within bacteriophage populations. In this review, we discuss recent developments in our understanding of bacteriophage sociobiology, including how selective pressures influence the outcomes of social interactions between populations of bacteria and bacteriophages. We also explore how tripartite social interactions between bacteria, bacteriophages, and an animal host affect host-microbe interactions. Finally, we argue that understanding the sociobiology of bacteriophages will have implications for the therapeutic use of bacteriophages to treat bacterial infections

    Important Roles for Gamma Interferon and NKG2D in γδ T-Cell-Induced Demyelination in T-Cell Receptor β-Deficient Mice Infected with a Coronavirus

    No full text
    γδ T cells mediate demyelination in athymic (nude) mice infected with the neurotropic coronavirus mouse hepatitis virus strain JHM. Now, we show that these cells also mediate the same process in mice lacking αβ T cells (T-cell receptor β-deficient [TCRβ(−/−)] mice) and demyelination is gamma interferon (IFN-γ) dependent. Most strikingly, our results also show a major role for NKG2D, expressed on γδ T cells, in the demyelinating process with in vivo blockade of NKG2D interactions resulting in a 60% reduction in demyelination. NKG2D may serve as a primary recognition receptor or as a costimulatory molecule. We show that NKG2D(+) γδ T cells in the JHM-infected central nervous system express the adaptor molecule DAP12 and an NKG2D isoform (NKG2D short), both required for NKG2D to serve as a primary receptor. These results are consistent with models in which γδ T cells mediate demyelination using the same effector cytokine, IFN-γ, as CD8 T cells and do so without a requirement for signaling through the TCR

    Data from: Bacterial quorum sensing and metabolic incentives to cooperate

    No full text
    The opportunistic pathogen Pseudomonas aeruginosa uses a cell-cell communication system termed “quorum sensing” to control production of public goods, extracellular products that can be used by any community member. Not all individuals respond to quorum-sensing signals and synthesize public goods. Such social cheaters enjoy the benefits of the products secreted by cooperators. There are some P. aeruginosa cellular enzymes controlled by quorum sensing, and we show that quorum sensing–controlled expression of such private goods can put a metabolic constraint on social cheating and prevent a tragedy of the commons. Metabolic constraint of social cheating provides an explanation for private-goods regulation by a cooperative system and has general implications for population biology, infection control, and stabilization of quorum-sensing circuits in synthetic biology

    Dandekar_Biolog_data

    No full text
    Biolog Phenotype Microarray dat

    A Metabolic Trade-Off Modulates Policing of Social Cheaters in Populations of Pseudomonas aeruginosa

    No full text
    Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the production of public goods such as the secreted protease elastase. P. aeruginosa requires the LasI–LasR QS circuit to induce elastase and enable growth on casein as the sole carbon and energy source. The LasI–LasR system also induces a second QS circuit, the RhlI–RhlR system. During growth on casein, LasR-mutant social cheaters emerge, and this can lead to a population collapse. In a minimal medium containing ammonium sulfate as a nitrogen source, populations do not collapse, and cheaters and cooperators reach a stable equilibrium; however, without ammonium sulfate, cheaters overtake the cooperators and populations collapse. We show that ammonium sulfate enhances the activity of the RhlI–RhlR system in casein medium and this leads to increased production of cyanide, which serves to control levels of cheaters. This enhancement of cyanide production occurs because of a trade-off in the metabolism of glycine: exogenous ammonium ion inhibits the transformation of glycine to 5,10-methylenetetrahydrofolate through a reduction in the expression of the glycine cleavage genes gcvP1 and gcvP2, thereby increasing the availability of glycine as a substrate for RhlR-regulated hydrogen cyanide synthesis. Thus, environmental ammonia enhances cyanide production and stabilizes QS in populations of P. aeruginosa
    corecore