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ABSTRACT Many bacteria use a cell-cell communication system called quorum
sensing to coordinate population density-dependent changes in behavior. Quorum
sensing involves production of and response to diffusible or secreted signals, which
can vary substantially across different types of bacteria. In many species, quorum
sensing modulates virulence functions and is important for pathogenesis. Over the
past half-century, there has been a significant accumulation of knowledge of the
molecular mechanisms, signal structures, gene regulons, and behavioral responses
associated with quorum-sensing systems in diverse bacteria. More recent studies
have focused on understanding quorum sensing in the context of bacterial sociality.
Studies of the role of quorum sensing in cooperative and competitive microbial in-
teractions have revealed how quorum sensing coordinates interactions both within a
species and between species. Such studies of quorum sensing as a social behavior
have relied on the development of “synthetic ecological” models that use nonclonal
bacterial populations. In this review, we discuss some of these models and recent
advances in understanding how microbes might interact with one another using
quorum sensing. The knowledge gained from these lines of investigation has the
potential to guide studies of microbial sociality in natural settings and the design of
new medicines and therapies to treat bacterial infections.
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Studies over the past half-century have revealed that bacteria can communicate
among themselves to carry out a wide range of complex social behaviors, including

cooperation. Such social behaviors are widespread in bacteria. It is now clear that social
behaviors have important consequences in shaping the behavior and structure of
polymicrobial communities. The developing interest in understanding bacterial social
behaviors has led to innovative approaches for studying dynamic, mixed microbial
communities. In particular, experiments using multiple-strain and multiple-species
laboratory and infection models have provided critical new insights into bacterial
sociality. In this minireview, we will focus on a type of cell-cell signaling in bacteria
called quorum sensing (QS), which has emerged as one model for understanding
bacterial sociality. We will review the basic molecular mechanisms of quorum sensing,
primarily focusing on Proteobacteria. We highlight recent studies of quorum sensing
that use laboratory, in situ, and in vivo models of multiple-strain and multiple-species
communities and describe how these studies have contributed to our current practical
and fundamental understanding of quorum sensing, communication, and competition
in bacteria.

OVERVIEW OF QUORUM SENSING

Quorum sensing (QS) is a type of population density-dependent cell-cell signaling
that triggers changes in behavior when the population reaches a critical density (1, 2).
QS systems rely on the production and sensing of extracellular signals. Typically,
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bacteria continually generate the signal starting at a low concentration in a fresh
culture, and the signal accumulates in the local environment as the population density
increases. Once a threshold concentration is reached, the signal interacts with a
receptor protein, causing a coordinated change in gene expression in the population.
Several types of QS signals exist: many Proteobacteria utilize acyl-homoserine lactone
(AHL)-type signals, and Gram-positive species utilize short oligopeptide signals that are
often chemically modified (Fig. 1). The QS systems in many bacterial species are well
understood at the molecular level, and extensively reviewed elsewhere (2–5). In this
review, we focus on models that have been developed to study how QS systems
increase the success of individuals in multiple-strain and multiple-species communities.
In many cases, AHL signaling systems are the focus of these studies; however, other
types of QS systems have also been studied.

AHL QS and diversity of QS systems. AHL QS was first described in the 1960s and
1970s in the bioluminescent marine bacterium Vibrio fischeri through the identification
of “autoinducing” activity in conditioned medium of high-density cultures, which
controls bioluminescence as part of symbiotic associations between V. fischeri and the
pinecone fish, Monocentris japonica, and the Hawaiian bobtail squid, Euprymna scolopes
(for reviews, see references 6 and 7). Bioluminescence is thought to help the pinecone
fish and the squid mask their shadows during predator avoidance (8). At high cell
densities, V. fischeri activates bioluminescence through the QS proteins LuxR and LuxI.
LuxI is a signal synthase that produces N-3-oxo-hexanoyl-homoserine lactone (3OC6-
HSL) (9). 3OC6-HSL specifically binds to LuxR (10, 11), a transcription factor that
activates expression of the luxCDABEG operon, which contains the genes that enable
bioluminescence (12, 13) and about 20 others (14). Similar AHL QS systems have since
been shown to be widely distributed in Proteobacteria, where they control diverse
behaviors, such as production of secreted toxins and virulence factors, biofilm matrix
components, and DNA conjugation (for reviews, see references 1 to 3 and 15). Many QS
architectures involve more than one signal-receptor combination: for example, Pseu-
domonas aeruginosa has two complete LuxR-I-type circuits, LasR-I and RhlR-I, which

FIG 1 (A) AHL quorum sensing in Vibrio fischeri. AHL signals (AHLs [solid blue circles]) are synthesized by LuxI family signal synthases and specifically interact
with LuxR family transcription factors. When the population reaches high cell density, accumulated AHLs interact with LuxR homologues. AHL interaction causes
the LuxR protein to change conformation and become active, which induces target gene regulation. In V. fisheri, LuxI and LuxR produce and respond to,
respectively, the AHL N-3-oxo-acyl-homoserine lactone (3OC6-HSL). (B) Structure 1, the Vibrio fischeri AHL, 3OC6-HSL. AHLs can vary in the side chain length
and substitution at the third carbon position of the acyl chain, and this variation dictates the specificity of the system. (C) Structure 2, Vibrio harveyi and Vibrio
cholerae AI-2, furanosyl borate ester form. Structure 3, Staphylococcus aureus autoinducing peptide (AIP-1). The letters in the balls indicate amino acids that are
cyclized posttranslationally.
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function in a hierarchy, and Burkholderia thailandensis has three complete LuxR-I
circuits. The selective pressures that result in multiple AHL signaling circuits are not
clear, although it has been proposed that the different properties of AHL signals might
provide specific benefits in different environments (16).

LuxR- and LuxI-type proteins have now been studied across many different bacterial
species. Most LuxI-type AHL synthases produce AHLs from S-adenosylmethionine (SAM)
and an acylated acyl carrier protein (ACP) from the fatty acid biosynthesis pathway (17–19).
The fatty acyl side chains can vary in length and oxidation at the third carbon position,
and this variation accounts for the specificity of the different systems. LuxR proteins
contain a conserved N-terminal AHL-binding domain (11) and a C-terminal helix-turn-
helix DNA-binding domain (20). The N terminus of LuxR interacts with AHLs, and this
interaction induces homodimerization of the LuxR homologue and subsequent binding
to a specific DNA sequence called the lux box in the target promoter (21, 22). The
AHL-bound LuxR often induces transcription of its cognate luxI signal synthase gene,
resulting in a positive-feedback loop that further increases the concentration of AHLs
(13). Although most LuxR family proteins act as transcriptional activators, a few are
repressors (for a review, see reference 23). Cognate LuxI and LuxR family proteins are
often encoded adjacent to one another. However, some species, including P. aerugi-
nosa and B. thailandensis, encode LuxR-type proteins with no cognate LuxI family AHL
synthase; these are termed orphan LuxR receptors (24).

Other types of signal-receptor QS systems exist in both proteobacterial and
Gram-positive organisms. There is an alternative form of QS signaling in Vibrio
harveyi and Vibrio cholerae (for a review, see reference 3). QS in these species
involves the signals CAI-1 and AI-2 and a third signal, HAI-1, in V. harveyi, which
each specifically bind to different cell surface receptors. The receptors act in parallel
to control expression of QS genes by modulating the phosphorylation state of two
phosphorelay response regulators (LuxU and LuxO) (25, 26), regulatory small RNAs,
and finally, a master QS gene transcription regulator (27, 28). Gram-positive bacteria
have peptide-based QS systems, of which the most well studied is the agr system
of Staphylococcus aureus (for a review, see reference 29). In this system, the QS
signal is produced by AgrB and AgrD. agrD encodes a prosignal (30), which is
exported and modified by the protein AgrB (31). At sufficient concentrations, the
signal binds to the cell surface receptor AgrC, a histidine kinase that in turn
activates the response regulator AgrA and affects changes in gene expression
through a small RNA called RNAIII (32).

In addition to bacterial QS systems, QS-like systems have also been reported in
eukaryotic microbes (33, 34), viruses (35), and even higher-order species such as ants
(36, 37). These examples provide evidence that population density-dependent re-
sponses have an important role across many different domains of life. In bacteria, many
of the factors controlled by QS systems are secreted or excreted goods that can be
shared by the entire group and are important for cooperation (4). Some of the
cooperative activities, such as secretion of toxins, might also be important for compe-
tition with other strains or species of bacteria. Studies of QS in natural mixed microbial
communities are difficult because of the variability and complexity of these commu-
nities. A significant advance in QS research has been the use of models where
nonclonal bacterial populations are grown in well-controlled environments. These
models have provided significant new insights into the mechanisms driving microbial
community interactions and how these interactions influence QS evolution. In the
remainder of this minireview, we discuss the ways by which these models have shaped
our current understanding of how QS control of certain factors increases reproductive
success in environments where there is fierce competition for resources. Together,
these studies have established a framework to think about the selective advantages
and disadvantages of using QS to regulate the production of a variety of extracellular
products.
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QS AND COOPERATION
QS control of cooperative behaviors. Many QS-regulated products are shared

“public goods” that can be used by any member of the community (38). Typically these
are secreted or excreted products, such as secreted proteases (39, 40). Synthesis of
public goods imparts a metabolic cost for an individual cell, but is beneficial for all the
other cells within the population (38). The cost involved in the production of QS-
dependent public goods makes it prone to exploitation, or social cheating. Social
cheating can offer growth or survival advantages to individual bacteria (41–44). Since
cheaters thrive at the expense of cooperators, their presence may destabilize cooper-
ation: if the proportion of social cheaters becomes too high, the population will no
longer produce sufficient public goods. If public goods are needed for growth, the
entire population stops growing and, ultimately, collapses (38, 44–46). Although cheat-
ing has typically been described as a within-species interaction, rivalrous species can
also exploit the cooperative behaviors of microbes (47). Therefore, understanding
cooperation and cheating within species has served as a foundation for expanding our
knowledge of community interactions.

Many laboratory studies have demonstrated that QS systems can be cooperative
(48–53) (Table 1). In situations where QS controls the production of public goods, the
social cheaters that arise are QS receptor mutants (49). These studies rely on laboratory
models of nonclonal populations grown under conditions requiring production of
QS-controlled goods, such as proteases that are needed for bacteria to obtain nutrients
from protein. The studies have shown that (i) cooperators have a growth advantage
over cheaters when they are grown separately under these conditions, and (ii) cheaters
exploit the cooperators and proliferate when they are grown as a mixed culture. The
laboratory models used for these experiments have provided a critical step forward for
studies to understand bacterial cooperation and polymicrobial community interactions
in more natural environments.

TABLE 1 Models for studying QS in cooperative and competitive microbial interactions

Model reference Species Function

Cooperation models
Casein liquid culture P. aeruginosa Cooperative protease production (46, 48, 49)

V. cholerae Cooperative protease production (52)
C. violaceum Cooperative protease production (45)
V. harveyi Cooperative protease production (51)

Swarming B. subtilis Cooperative rhamnolipid production (53, 58, 60)
P. aeruginosa Cooperative rhamnolipid production (59)

Biofilm P. aeruginosa Cooperative protease production (56)
Ex vivo infection P. aeruginosa Cooperative virulence factor production (64)
In vivo infection P. aeruginosa Cooperative virulence factor production (62)

S. aureus Cooperative virulence factor production (50)

Competition and models of multispecies
interactions

Dual-species liquid culture B. thailandensis-C. violaceum Antimicrobial production and AHL-dependent eavesdropping (104)
Serratia plymuthica-Escherichia coli Antimicrobial production (140, 141)
P. aeruginosa-B. cepacia species Antimicrobial production (47, 134)
P. aeruginosa-A. tumefaciens Antimicrobial production (133)
P. aeruginosa-S. aureus Antimicrobial production (47)
P. aeruginosa-B. cenocepacia AHL-dependent eavesdropping (113)

Biofilm B. thailandensis Contact-dependent toxin delivery (40, 83)
P. aeruginosa-A. tumefaciens Antimicrobial production and swarming (133)
S. plymuthica-E. coli Antimicrobial production (140)
S. gordonii-P. gingivalis Biofilm growth (AI-2 [142])
S. oralis-A. naeslundii Biofilm growth (AI-2 [143])

In situ P. aureofaciens/P. fluorescens-
Gaeumannomyces graminis

Phenazine production (102)

P. syringae-plant epiphytes Plant virulence, AHL-dependent eavesdropping (112)
Mimicking in vivo growth P. aeruginosa-S. aureus AHL-dependent competition (135)

E. faecalis Conjugation (136)
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Laboratory models of cooperation. QS regulation of cooperation and cheating
was first demonstrated using P. aeruginosa. P. aeruginosa uses QS to control production
of a protease called elastase (54). Elastase production is required for growth when
populations are grown on casein as the sole source of carbon and energy (48, 49). When
P. aeruginosa populations are passaged in casein broth, mutations in the gene encod-
ing the QS receptor LasR emerge within �100 generations. The mutations are typically
single-nucleotide changes that abolish or significantly reduce LasR function (49). These
mutants are cheaters, as they are unable to grow by themselves in casein broth;
however, they proliferate when grown in a mixed culture with the wild type. In the
passaged populations, LasR mutants rapidly increase until they reach 25 to 50% of the
population. It is thought that the mutants are maintained at this frequency by a
policing mechanism (55) that will be discussed below. Similar models of cooperation
based on protease production have been developed using Chromobacterium violaceum
(45), V. harveyi (51), and Vibrio cholerae (52). A protease-dependent laboratory model
has also been used to demonstrate QS-dependent cooperation of P. aeruginosa cells
grown under biofilm conditions (56).

Other systems for studying cooperation and cheating have since been developed.
For example, swarming is a social trait due to cooperative production of secreted
surfactants (57–59). QS controls surfactant production, and thus swarming, in several
bacterial species, including P. aeruginosa and Bacillus subtilis, and has been used as the
basis for a laboratory model to study QS and sociality (53, 58–60). QS exploitation by
cheaters has also been demonstrated using in vivo models (50, 61, 62). Rumbaugh and
colleagues (62) demonstrated that P. aeruginosa LasR mutants act as cheaters during
wound infections in mice. In the study, LasR mutants were attenuated compared to the
wild type in single-strain infections. However, when a mixture of both strains was used
as an infection inoculum, the LasR mutants outgrew the wild type and ultimately
dominated the population. Further, mice infected with the mixed population had
reduced virulence relative to wild-type-infected mice (62). Similar results were observed
with S. aureus and AgrC-null QS mutants in a wax moth larva infection model (50).
Together, these experiments show that QS in many species of bacteria can be exploited
under certain laboratory and infection conditions.

It is possible that QS-null bacteria have nonsocial advantages in some settings (63,
64). Surveys of some communities from infections and other environments indicate QS
mutants (signal receptor deficient) can readily be isolated from diverse bacterial
species, including P. aeruginosa (65–74), V. cholerae (75), S. aureus (76–78), and Entero-
coccus faecalis (79). However, it remains unclear whether these mutants function as
cheaters in these natural communities. In one study of P. aeruginosa infections of
ventilator-intubated patients, LasR mutants were shown to proliferate only when
QS-intact cells were present (80), supporting the idea that the LasR mutants are social
cheaters. However, in other studies, LasR mutants appear to have an intrinsic growth
advantage and to be better adapted to certain growth environments than the wild
type, suggesting there is a selective advantage of mutating LasR (63, 64). These types
of experiments highlight the complexity of QS systems and the need for robust
experimental systems in which social and nonsocial behaviors can be disentangled.
Information from studies of laboratory models can reveal conditions and circumstances
where social or nonsocial behavior is favored in natural communities. These systems are
also useful to understand other aspects of QS and sociality, such as how QS contributes
to the control of cheating.

Mechanisms to stabilize cooperative behaviors that rely on QS. Because the rise
of cheaters can threaten cooperation in a population, a recurring question in evolu-
tionary biology is how do cooperative systems persist, despite the ongoing threat of
cheating (81)? Microbial systems are emerging as an excellent tool for studying cheater
control because microbes have the advantage of rapid growth, high population yields,
and reproducible growth in the laboratory. Studies in these systems suggest cheater
control is widespread in bacteria (38). The laboratory models of QS and cooperation
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such as those highlighted in the previous section are particularly straightforward. These
systems have provided novel insights into cheater control and proven a valuable tool
for biologists to study cooperation and cheating.

QS can stabilize cooperation by decreasing the incentives to cheat or by sanctioning
cheaters. One such mechanism of cheater control is through pleiotropy, where QS
coregulates public goods with goods that provide an individual benefit (private goods)
(45, 46, 58, 82, 83). A similar phenomenon occurs in the slime mold Dictyostelium
discoideum in a process that does not involve QS (84). Linking public and private goods
through pleiotropy causes a disincentive to cheat due to loss of the private good. In
P. aeruginosa, in addition to the public good elastase, the LasR-I QS system controls a
periplasmic enzyme important for adenosine catabolism, a “private good” (46). When
P. aeruginosa populations are passaged on adenosine-supplemented casein medium,
LasR mutant cheaters do not emerge as they do when casein is the sole carbon and
energy source (46). The LasR mutants are constrained by the availability of adenosine,
which provides a direct benefit to QS-proficient cooperators in the population (46).
Cheater control through pleiotropy is also a feature of C. violaceum, in which QS
coregulates production of a secreted protease with a membrane-localized antibiotic
efflux pump (45). QS mutants are more sensitive to certain antibiotics and do not
emerge when cooperating populations are passaged in the presence of these antibi-
otics (45). In the case of C. violaceum, QS stabilization of cooperation relies on
antibiotics produced by other species. Although pleiotropic mechanisms can stabilize
QS, it is thought that properties other than cheater control drive selection of QS
regulation of private goods (85). In the case of adenosine catabolism and antibiotic
resistance, these advantages remain unclear.

QS can also stabilize cooperation through a mechanism involving selective harm of
cheaters, a type of policing or enforcement mechanism similar to that described in
animals (86). Cheaters are typically punished through intoxication by factors produced
by cooperators. In P. aeruginosa, QS controls production of hydrogen cyanide and also
the induction of cyanide resistance. In cooperating populations grown on casein,
cyanide produced by cooperators limits growth of LasR mutants (55). Interestingly,
growth under certain conditions can enhance policing effects, leading to greater
stability of cooperation (87). Another form of policing is observed in Burkholderia
thailandensis, where QS controls a type VI secretion (T6S) toxin immunity system (83).
In T6S systems, a toxin is transferred from a donor to a recipient cell during direct
contact. Cells that make an immunity protein, typically close relatives (kin) of the donor,
can defend against the toxin. Cells with no immunity protein are killed (88, 89), allowing
kin discrimination. In B. thailandensis, QS controls both toxin delivery and toxin immu-
nity; thus, QS-defective cheaters are sensitive to killing by cooperator-produced T6S
toxins (83).

Cheating can also be deterred through “metabolic prudence”—that is, delaying
production of costly products until nutrients required for growth are exhausted (57). QS
provides one means of delaying production of costly public goods. For example, in
swarming P. aeruginosa colonies, cheaters exploit cooperating cells that secrete rham-
nolipid biosurfactants, which are needed to swarm (57). However, the cheaters swarm
as well as the wild type when mixed in the same colony. This is because production of
rhamnolipid is delayed until the cells are in the stationary phase, when the costs of
production are relatively low. This delay was due to regulation by QS and also by
nitrogen and carbon availability. The delay in producing rhamnolipids minimized the
benefit of cheating, and swarming becomes cheatable when cooperators are geneti-
cally modified to produce rhamnolipids constitutively (57). Thus, QS can provide
protection against cheating by delaying costly goods production.

Evolution theory predicts that limited dispersal through spatial structuring or high
viscosity is also protective against cheating (90). Conditions of limited dispersal increase
the probability that interacting individuals are close relatives (91), such that cooperative
public goods are shared only among related cooperator cells. Indeed, QS is protected
from cheaters in P. aeruginosa populations grown on casein under conditions of high
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relatedness (48). Many microbes grow in structured communities called biofilms, in
which cell aggregates are encased in a self-produced extracellular matrix (ECM). Several
recent experimental studies support the idea that biofilm formation promotes coop-
eration (92–95). QS controls biofilm formation in many bacterial species (for a review,
see reference 96). Thus, QS-dependent biofilm formation and spatial structuring might
increase cooperation, which could be important for stabilizing QS in natural environ-
ments (97).

QS AND COMPETITION
QS control of behaviors associated with competition. Many bacterial species use

QS to control production of secreted or cell-targeted toxins: for example, bacteriocins
in Streptococcus species (98, 99) and type VI secretion effectors in B. thailandensis (83).
(For a review of secreted QS-controlled toxins, see reference 100.) Many such toxins are
thought to promote competition with other strains or species of bacteria (100, 101).
Thus, QS activation would be predicted to influence species dynamics in polymicrobial
communities. Early support for this idea came from studies of the wheat rhizosphere
(102). In these soil communities, the saprophytes and biocontrol agents Pseudomonas
fluorescens 2-79 and Pseudomonas aureofaciens 30-84 use QS-regulated antibiotic
phenazines to fight the fungus Gaeumannomyces graminis var. tritici and colonize the
plant. Since these early in situ studies, the importance of QS in competition has been
demonstrated in other bacteria, primarily using laboratory models of dual-species
competition (Table 1).

Why are many competition-associated factors under QS control? The QS-dependent
delay in antibiotic production is thought to mitigate the metabolic costs of production
until the population can produce a sufficient concentration to kill a competitor (100).
This delay could also deprive competitors of the ability to mount a defensive response
to subinhibitory antibiotic concentrations. Population density might also be one of
several types of information used by bacteria to infer the ecologic potential for
competition (101). High cell density might be a good indicator that nutrient concen-
trations will soon become limited and could allow regulatory changes that broadly
prepare the cell for such a situation. In support of this idea, although unrelated to
competition, QS regulates changes in metabolism that prepare the population for
stationary-phase-induced alkaline stress (103). Although the design of studies to un-
derstand the advantages of QS regulation of competition-associated factors can be
technically challenging, several models have been developed that serve as a starting
point to begin to understand the role of QS in competition.

Laboratory models of QS and interspecies competition. Dual-species competi-
tion models present unique challenges, including differences in growth conditions and
growth rates. Most model systems use species or strains with compatible growth rates
and growth requirements and that are also likely to interact in natural communities.
One such model uses the saprophytes B. thailandensis and C. violaceum (104). These
two species grow at similar rates under the same conditions and are also both
isolated from soil and water environments. In both species, QS controls the
production of secreted antibiotics. In the case of B. thailandensis, the antibiotic is a
ribosome-targeting polyketide, bactobolin (105, 106). The C. violaceum antibiotic
active in this model is unknown. For each species, mutations disrupting QS reduce
competitiveness. This dual-species competition was also used to develop an in silico
model (104). In the in silico model, increasing the cost of antibiotic production or
producing it too early slows population growth and decreases killing efficiency. The
in silico results support the idea that QS regulation of antibiotic production provides
a significant cost savings to populations.

The C. violaceum-B. thailandensis model also demonstrates “eavesdropping,” or
detection of other species’ AHLs (104). Although many AHL receptors specifically
recognize their cognate AHLs and a narrow range of structurally related analogues, the
C. violaceum AHL receptor CviR has a broad spectrum of AHL response (107). In the
competition model, C. violaceum CviR could detect and respond to B. thailandensis
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AHLs, and this ability to eavesdrop increased C. violaceum competitiveness in some
situations (104). These results suggest a potential benefit of broad-range AHL detection
by some LuxR homologues (108–111). This also may account for some orphan QS
receptors in bacteria that lack cognate signal synthases. AHL-dependent eavesdropping
has also been demonstrated for other species, such as between endophytes of plants
(112) and between P. aeruginosa and Burkholderia cenocepacia, two pathogens known
to coinfect the lungs of patients with the genetic disease cystic fibrosis (113). Although
AHL signaling has traditionally been thought of as an intraspecies communication
system, the results of these studies suggest AHLs might also be used to sense and
respond to potential competitors in the environment (114–116). Another QS molecule,
AI-2, is also thought to be important for interspecies signaling (117). Recent studies
support that AI-2 may play a role in bacterial community dynamics in the mammalian
gut (118, 119), although it is not clear if this is through a signal receptor-dependent
process (120).

A substantial effort has been made to understand the interactions between
P. aeruginosa and S. aureus, as these bacteria are commonly cocultured from chronic
wound infections (121). P. aeruginosa and S. aureus interaction has been studied in
coculture in vitro (122–125), in a model mimicking the wound environment (126), in an
in vivo rat infection model (127), and using a range of clinical strains in vitro and in vivo
(128) (for a review, see reference 129). When both bacteria are together in vitro or in
vivo, P. aeruginosa usually surpasses or decreases the S. aureus population. This effect
is largely due to compounds controlled by QS. The first such compound characterized
was 4-hydroxy-2-heptylquinoline N-oxide (HQNO), which was originally described as an
antistaphylococcal compound (130). HQNO decelerates growth by inhibiting oxidative
respiration via the cytochrome system, although it is not bactericidal (130, 131).
Exposure of S. aureus to HQNO does not result in eradication of S. aureus but rather in
the emergence of small colony S. aureus variants (122). Another such QS-regulated
antistaphylococcal compound is pyocyanin, a phenazine produced by P. aeruginosa
(132). Pyocyanin, like HQNO, blocks oxidative respiration and induces the formation of
small colonies (125). Finally, P. aeruginosa uses the QS-regulated protease LasA to
degrade pentaglycine from the S. aureus cell wall, inducing cell lysis, which may be
beneficial to P. aeruginosa (127).

The P. aeruginosa QS products hydrogen cyanide, rhamnolipid, pyocyanin, and
pyoverdine are also important for interactions with Proteobacteria (47, 133, 134). For
example, in P. aeruginosa and Burkholderia multivorans cocultures, QS-dependent
production of hydrogen cyanide is important for P. aeruginosa to outcompete B. mul-
tivorans. In the experiments, QS-dependent antibiotic production could prevent B. mul-
tivorans from exploiting QS-dependent public goods (47). These results demonstrate
another facet of QS-dependent pleiotropy: coregulation of antibiotics with public
goods can stabilize cooperative behavior in mixed microbial communities.

QS and models that mimic polymicrobial in vivo infections. Laboratory models
can be used to mimic host conditions to make inferences about the role of QS in
polymicrobial infections. A recent study suggests host factors might modulate P. aerugi-
nosa QS during coinfections with S. aureus (135). These studies were conducted using
a laboratory chronic wound model that more closely mimics the chronic wound
environment (135), which includes plasma and red blood cells. In the chronic wound
model, plasma albumin allowed S. aureus to survive coculture with P. aeruginosa by
sequestering P. aeruginosa AHLs and reducing QS activation of anti-S. aureus toxins.
Because many P. aeruginosa QS-controlled toxins are also virulence factors, these
results also suggest that P. aeruginosa virulence might be reduced by albumin-
dependent QS inhibition during infections.

Serum can also change cell-cell interactions by modulating signaling in the Gram-
positive species Enterococcus faecalis (136). E. faecalis uses a peptide signaling system
to control plasmid conjugation (reviewed in reference 137). This signaling system
triggers conjugation when a sufficient quorum of plasmid-free recipient cells is de-
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tected. In this case, albumin sequesters a peptide inhibitor that normally prevents
conjugation in the absence of recipient cells (136). Growth in serum increased conju-
gation, presumably because albumin-dependent sequestration of the inhibitor caused
conjugation to go unchecked (136). Results of these two studies suggest the outcome
of QS-mediated species interactions might be very different in a host environment from
that observed under standard laboratory growth conditions, an idea that requires
further study in infections in vivo. A key challenge moving into polymicrobial infection
models is to develop systems such as these that mimic the host environment in a
context where variables, such as key nutrients and host-supplied factors, can be
controlled or removed. In this way, the conditions and types of infections that drive
cell-cell interactions can be delineated.

CONCLUSIONS

There is now a wealth of knowledge of how bacterial populations use QS
systems to communicate and coordinate diverse behaviors. In the past decade, this
knowledge has served as a foundation to build approaches for studying QS in
polymicrobial communities. This emerging field of investigation is relevant to our
understanding of how QS contributes to the success of bacteria in diverse envi-
ronments—from polymicrobial infections to natural communities—and how these
systems might be manipulated to encourage specific outcomes, such as altering
community dynamics of microbiomes or ecologically important soil communities.
Advances in this field have relied on laboratory and in vivo models of nonclonal
bacterial populations to model natural communities that can be prohibitively
complex to study directly. By studying polymicrobial model systems, we have
learned that QS is important for cooperation and for competition among and
between species. These models have also been useful to test predictions about the
evolution of QS and social behavior. We anticipate existing models will continue to
provide new insights into QS and sociality, either as they are or when adapted for
new purposes or increased complexity. We also look forward to results of studies
with newly developed models (e.g., the three-dimensional protein-based picoliter-
scale microcavities [termed bacterial “lobster traps” in reference 138], in vitro
wound models [126], and alginate bead aggregates [139]) and their application to
designing studies of more natural ecosystems and infections. Key questions include
understanding how QS drives polymicrobial interactions across different host and
nonhost environments and how these interactions drive the evolution of QS and
ultimately shape the structure and behavior of these communities.
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