477 research outputs found
Charge Transport Transitions and Scaling in Disordered Arrays of Metallic Dots
We examine the charge transport through disordered arrays of metallic dots
using numerical simulations. We find power law scaling in the current-voltage
curves for arrays containing no voids, while for void-filled arrays charge
bottlenecks form and a single scaling is absent, in agreement with recent
experiments. In the void-free case we also show that the scaling exponent
depends on the effective dimensionality of the system. For increasing applied
drives we find a transition from 2D disordered filamentary flow near threshold
to a 1D smectic flow which can be identified experimentally using
characteristics in the transport curves and conduction noise.Comment: 4 pages, 4 postscript figure
Moving walls accelerate mixing
Mixing in viscous fluids is challenging, but chaotic advection in principle
allows efficient mixing. In the best possible scenario,the decay rate of the
concentration profile of a passive scalar should be exponential in time. In
practice, several authors have found that the no-slip boundary condition at the
walls of a vessel can slow down mixing considerably, turning an exponential
decay into a power law. This slowdown affects the whole mixing region, and not
just the vicinity of the wall. The reason is that when the chaotic mixing
region extends to the wall, a separatrix connects to it. The approach to the
wall along that separatrix is polynomial in time and dominates the long-time
decay. However, if the walls are moved or rotated, closed orbits appear,
separated from the central mixing region by a hyperbolic fixed point with a
homoclinic orbit. The long-time approach to the fixed point is exponential, so
an overall exponential decay is recovered, albeit with a thin unmixed region
near the wall.Comment: 17 pages, 13 figures. PDFLaTeX with RevTeX 4-1 styl
Rigorous Multicomponent Reactive Separations Modelling : Complete Consideration of Reaction-Diffusion Phenomena
This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used.Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick’s law is less adapted for multicomponent mixtures where some abnormalities such as counter-diffusion take place
CO<inf>2</inf> absorption using diethanolamine-water solutions in a rotating spiral contactor
Results for mass transfer in a rotating spiral device are presented here for absorption of carbon dioxide from nitrogen carrier gas using mixtures of diethanolamine (DEA) and water. The ability of the device to examine the full range of flow rate ratio for the two phases while controlling the relative thicknesses of the phase layers is applied to surveying absorption performance over a wide range of DEA concentration at 312Â K and 1.8 bara. Comparisons are made for a fixed 86Â ÎĽm liquid layer thickness, which is shown to fix also the fraction of the liquid accessible by diffusion, while maintaining 90% removal of CO2 from a gas stream of 10% (mole) CO2 in nitrogen. The increasing liquid viscosity with DEA fraction is countered by reducing the liquid flow rate to maintain constant liquid layer thickness and diffusion depth. The allowed gas throughput, while meeting 90% removal, increases with DEA concentration until the increasing viscosity gives sufficient reduction in liquid flow rate to offset the increasing CO2 capacity of the liquid. The maximum gas flow rate has a broad peak centred at a DEA mole fraction of about 0.072 (31% by mass). Utilisation of the amine is increased as DEA concentration increases, apparently as a result of the longer residence time, suggesting an effect of chemical time scales on the order of seconds. For a fixed concentration, full utilisation of the amine is achieved by decreasing the liquid flow rate, which reduces layer thickness and increases diffusion time. The work highlights the use of the rotating spiral for rapid and accurate testing to determine optimum liquid composition of absorbent formulations
Anyons in a weakly interacting system
We describe a theoretical proposal for a system whose excitations are anyons
with the exchange phase pi/4 and charge -e/2, but, remarkably, can be built by
filling a set of single-particle states of essentially noninteracting
electrons. The system consists of an artificially structured type-II
superconducting film adjacent to a 2D electron gas in the integer quantum Hall
regime with unit filling fraction. The proposal rests on the observation that a
vacancy in an otherwise periodic vortex lattice in the superconductor creates a
bound state in the 2DEG with total charge -e/2. A composite of this
fractionally charged hole and the missing flux due to the vacancy behaves as an
anyon. The proposed setup allows for manipulation of these anyons and could
prove useful in various schemes for fault-tolerant topological quantum
computation.Comment: 7 pages with 3 figures. For related work and info visit
http://www.physics.ubc.ca/~fran
Robust plasmon waveguides in strongly-interacting nanowire arrays
Arrays of parallel metallic nanowires are shown to provide a tunable, robust,
and versatile platform for plasmon interconnects, including high-curvature
turns with minimum signal loss. The proposed guiding mechanism relies on gap
plasmons existing in the region between adjacent nanowires of dimers and
multi-wire arrays. We focus on square and circular silver nanowires in silica,
for which excellent agreement between both boundary element method and multiple
multipolar expansion calculations is obtained. Our work provides the tools for
designing plasmon-based interconnects and achieving high degree of integration
with minimum cross talk between adjacent plasmon guides.Comment: 4 pages, 5 figure
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence
We propose a semi-discrete finite difference multiscale scheme for a concrete
corrosion model consisting of a system of two-scale reaction-diffusion
equations coupled with an ode. We prove energy and regularity estimates and use
them to get the necessary compactness of the approximation estimates. Finally,
we illustrate numerically the behavior of the two-scale finite difference
approximation of the weak solution.Comment: 22 pages, 1 figure, submitted to Japan Journal of Industrial and
Applied Mathematic
Atomic-scale confinement of optical fields
In the presence of matter there is no fundamental limit preventing
confinement of visible light even down to atomic scales. Achieving such
confinement and the corresponding intensity enhancement inevitably requires
simultaneous control over atomic-scale details of material structures and over
the optical modes that such structures support. By means of self-assembly we
have obtained side-by-side aligned gold nanorod dimers with robust
atomically-defined gaps reaching below 0.5 nm. The existence of
atomically-confined light fields in these gaps is demonstrated by observing
extreme Coulomb splitting of corresponding symmetric and anti-symmetric dimer
eigenmodes of more than 800 meV in white-light scattering experiments. Our
results open new perspectives for atomically-resolved spectroscopic imaging,
deeply nonlinear optics, ultra-sensing, cavity optomechanics as well as for the
realization of novel quantum-optical devices
- …