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Abstract

We propose a semi-discrete finite difference multiscale scheme for a concrete corrosion model
consisting of a system of two-scale reaction-diffusion equations coupled with an ode. We prove energy
and regularity estimates and use them to get the necessary compactness of the approximation estimates.
Finally, we illustrate numerically the behavior of the two-scale finite difference approximation of the
weak solution.

Keywords Multiscale reaction-diffusion equations · Two-scale finite difference method · Approxima-
tion of weak solutions · Convergence · Concrete corrosion

Mathematics Subject Classification (2000) MSC 35K51 · 35K57 · 65M06 · 65M12 · 65M20

1 Introduction
Biogenic sulfide corrosion of concrete is a bacterially mediated process of forming hydrogen sulfide
gas and the subsequent conversion to sulfuric acid that attacks concrete and steel within wastewater
environments. The hydrogen sulfide gas is oxidized in the presence of moisture to form sulfuric acid
that attacks the matrix of concrete. The effect of sulfuric acid on concrete and steel surfaces exposed
to severe wastewater environments (like sewer pipes) is devastating, and is always associated with high
maintenance costs.

The process can be briefly described as follows: Fresh domestic sewage entering a wastewater collec-
tion system contains large amounts of sulfates that, in the absence of dissolved oxygen and nitrates, are
reduced by bacteria. Such bacteria identified primarily from the anaerobic species Desulfovibrio lead to
the fast formation of hydrogen sulfide (H2S) via a complex pathway of biochemical reactions. Once the
gaseous H2S diffuses into the headspace environment above the wastewater, a sulfur oxidizing bacteria –
primarily Thiobacillus aerobic bacteria – metabolizes the H2S gas and oxidize it to sulphuric acid. It is
worth noting that Thiobacillus colonizes on pipe crowns above the waterline inside the sewage system.
This oxidizing process prefers to take place where there is sufficiently high local temperature, enough
productions of hydrogen sulfide gas, high relative humidity, and atmospheric oxygen; see section 2.2 for
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more details on the involved chemistry and transport mechanisms. Good overviews of the civil engi-
neering literature on the chemical aggression with acids of cement-based materials [focussing on sulfate
ingress] can be found in [3, 12, 17, 22].

If we decouple the mechanical corrosion part (leading to cracking and respective spalling of the con-
crete matrix) from the reaction-diffusion-flow part, and look only to the later one, the mathematical prob-
lem reduces to solving a partly dissipative reaction-diffusion system posed in heterogeneous domains.
Now, assuming further that the concrete sample is perfectly covered by a locally-periodic repeated regu-
lar microstructure, averaged and two-scale reaction-diffusion systems modeling this corrosion processes
can be derived; that is precisely what we have done in [9] (formal asymptotics for the locally-periodic
case) and [21] (rigorous asymptotics via two-scale convergence for the periodic case).

Here, our attention focusses on the two-scale corrosion model. Besides performing the averaging
procedure and ensuring the well-posedness of the resulting model(s), we are interested in simulating
numerically the influence of the microstructural effects on observable (macroscopic) quantities. We refer
the reader to [5], where we performed numerical simulations of such a two-scale model. Now, is the right
moment to raise the main question of this paper:

Is the two-scale finite difference scheme used in [5] convergent, i.e., does it approximate the weak
solution to the two-scale system?

It is worth mentioning that there is a wealth of multiscale numerical techniques that could (in princi-
ple) be used to tackle RD systems of the type treated here. We mention at this point three approaches only:
(i) the multiscale FEM method developed by Babuska and predecessors (see the book [8] for more Refs.),
(ii) computations on two-scale FEM spaces [16] / two-scale Galerkin approximations [19, 18], and (iii)
the philosophy of heterogeneous multiscale methods (HMM) [7]. We choose to employ here multiscale
finite differences (multiscale FD) mimicking the [two-scale] tensorial structure present in (ii). Our hope
is to become able to marry at a later stage the two-scale Galerkin approximation ideas from [19, 15] in
a HMM framework eventually based on finite differences. Our standard reference for FD-HMM idea is
[1].

The paper is structured as follows: Section 2 introduces the reader to the physico-chemical back-
ground of the corrosion process, two-scale geometry, and setting of the equations. The numerical scheme
together with basic ingredients like discrete operators, discrete Green formulae, discrete trace inequal-
ities etc. are presented in section 3, while the approximation estimates together with the interpolation
(extension) and compactness steps are the subject of Section 5 . We conclude the paper with Section 6
containing numerical illustrations of the discrete approximation of the weak solution.

2 Background and statement of the problem

2.1 Two-scale geometry
We consider the evolution of a chemical corrosion process (sulfate attack) taking place in one-dimensional
macroscopic region Ω := (0,L), L > 0, that represents a concrete sample along a line perpendicular to
the pipe surface with x = 0 being a point at the inner surface in contact with sewer atmosphere and x = L
being a point inside the concrete wall. Since we do not take into account bulging of the inner surface
due to the growth of soft gypsum structures, the shape of the domain Ω does not change w.r.t. the time
variable t.

We denote the typical microstructure (or standard cell [11]) by Y := (0, `), ` > 0. Usually cells in
concrete contain a stationary water film, and air and solid fractions in different ratios depending on the
local porosity. Generally, we expect that, due to the randomness of the pores distribution in concrete,
the choice of the microstructure essentially depends on the macroscopic position x ∈ Ω, i.e., we would
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then have Yx; see [20] for averaging issues of double porosity media involving locally periodic ways of
distributing microstructures, and [9] for more comments directly related to the sulfatation problem where
pores are distributed in a locally periodic fashion. In this paper, we restrict to the case when the medium
Ω is made of the same microstructure Y periodically repeated to pave perfectly the region. Furthermore,
since at the microscopic level the involved reaction and diffusion processes take place in the pore water,
we choose to denote by Y only the wet part of the pore. Efficient direct computations (with controlled
accuracy and known convergence rates) of scenarios involving Yx as well as the corresponding error
analysis are generally open problems in the field of multiscale numerical simulation.

2.2 Chemistry
Sewage is rich in sulphur-containing materials and normally it is without any action on concrete. Un-
der suitable conditions like increased temperature or lower flow velocity oxygen in sewage can become
depleted. Aerobic, purifying bacteria become inactive while anaerobic bacteria that live in slime layers
at the bottom of the sewer pipe proliferate. They obtain needed oxygen by reducing sulfur compounds.
Sulfur reacts with hydrogen and forms hydrogen sulfide (H2S), which then diffuses in sewage and enters
sewer atmosphere. It moves in the air space of the pipe and goes up towards the pipe wall. Gaseous H2S
(further denoted as H2S(g)) enters into the concrete pores (microstructures) via both air and water parts.
H2S(g) diffuses quickly through the air-filled part of the porous structure over macroscopic distances,
while it dissolves in the thin, stationary water film of much smaller, microscopic thickness that clings on
the surface of the fabric.

There are many chemical reactions taking place in the porous microstructure of sewer pipes which
degrade the performance of the pipe structure depending on the intensity of the interaction between the
chemical reactions and the local environment. Here we focus our attention on the following few relevant
chemical reactions:

H2S(aq)+2O2→ 2H++SO2−
4 (1a)

10H++SO−2
4 +organic matter→ H2S(aq)+ 4H2O +oxidized matter (1b)

H2S(aq)
 H2S(g) (1c)

2H2O+H++SO2−
4 +CaCO3→ HCO3− +CaSO4 ·2H2O. (1d)

Dissolved hydrogen sulfide (further denoted as H2S(aq)) undergoes oxidation by aerobic bacteria living
in these films and sulfuric acid H2SO4 is produced (reaction (1a)). This aggressive acid reacts with
calcium carbonate (i.e., with our concrete sample) and a soft gypsum layer (CaSO4 ·2H2O) consisting of
solid particles (unreacted cement, aggregate), pore air and moisture is formed (reaction (1d)).

The model considered in this paper pays special attention to the following aspects:

(i) exchange of H2S from water to the air phase and vice versa (reaction (1c);

(ii) production of gypsum at micro solid-water interfaces (reaction (1d)).

The transfer of H2S is modeled by means of (deviations from) the Henry’s law, while the production
of gypsum is incorporated in a non-standard non-linear reaction rate, here denoted as η ; see (6) for a
precise choice. Equation (7) indicates the linearity of the Henry’s law structure we have in mind. The
standard reference for modeling gas-liquid reactions at stationary interfaces (including a derivation via
first principles of the Henry’s law) is [6].

2.3 Setting of the equations
Let S := (0,T ) (with T ∈ (0,∞)) be the time interval during which we consider the process and let Ω and
Y as described in section 2.1. We look for the unknown functions (mass concentrations of active chemical
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species)

u1 : Ω×S→ R – concentration of H2S(g),
u2 : Ω×Y ×S→ R – concentration of H2S(aq),
u3 : Ω×Y ×S→ R – concentration of H2SO4,

u4 : Ω×S→ R – concentration of gypsum,

that satisfy the following two-scale system composed of three weakly coupled PDEs and one ODE

∂tu1−d1∂xxu1 = d2∂yu2|y=0, in Ω, (2a)
∂tu2−d2∂yyu2 =−ζ (u2,u3), in Ω×Y, (2b)
∂tu3−d3∂yyu3 = ζ (u2,u3), in Ω×Y, (2c)

∂tu4 = η(u3|y=`,u4), in Ω, (2d)

together with boundary conditions

u1 = uD
1 , on {x = 0}×S, (3a)

d1∂xu1 = 0, on {x = L}×S, (3b)

−d2∂yu2 = BiM(Hu1−u2), on Ω×{y = 0}×S, (3c)
d2∂yu2 = 0, on Ω×{y = `}×S, (3d)
−d3∂yu3 = 0, on Ω×{y = 0}×S, (3e)

d3∂yu3 =−η(u3,u4), on Ω×{y = `}×S, (3f)

and initial conditions
u1 = u0

1, on Ω×{t = 0},
u2 = u0

2, on Ω×Y ×{t = 0},
u3 = u0

3, on Ω×Y ×{t = 0},
u4 = u0

4, on Ω×{t = 0}.

(4)

Here dk, k ∈ {1,2,3}, are the diffusion coefficients, BiM is a dimensionless Biot number, H is the Henry’s
constant, α,β are air-water mass transfer functions, while η(·) is a surface chemical reaction. Note that
ui (i = 1, . . . ,4) are mass concentrations. Furthermore, all unknown functions, data and parameters carry
dimensions.

2.3.1 Technical assumptions

The initial and boundary data, the parameters as well as the involved chemical reaction rate are assumed
to satisfy the following requirements:

(A1) dk > 0, k ∈ {1,2,3}, BiM > 0, H > 0, uD
1 > 0 are constants;

(A2) The function ζ represents the biological oxidation volume reaction between the hydrogen sulfide
and sulfuric acid and is defined by

ζ : R2→ R, ζ (r,s) := αr−β s, (5)

where α,β ∈ L∞
+(Y ).

(A3) We assume the reaction rate η : R2→ R+ takes the form

η(r,s) =

{
kR(r)Q(s), for all r ≥ 0,s≥ 0,
0, otherwise,

(6)
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where k > 0 is the corresponding reaction constant. We assume η to be (globally) Lipschitz in both
arguments. Furthermore, R is taken to be sublinear (i.e., R(r)≤ r for all r ∈ R, in the spirit of [2]), while
Q is bounded from above by a threshold c̄ > 0. Furthermore, let R ∈W 1,∞(0,M3) and Q ∈W 1,∞(0,M4)
be monotone functions (with R strictly increasing), where the constants M3 and M4 are the L∞ bounds on
u3 and, respectively, on u4. Note that [5, Lemma 2] gives the constants M3,M4 explicitly.

(A4) u0
1 ∈ H2(Ω)∩L∞

+(Ω), (u0
2,u

0
3) ∈

[
L2(Ω;H1(Y ))

]2× [L∞
+(Ω×Y )

]2, u0
4 ∈ H1(Ω)∩L∞

+(Ω);

2.3.2 Micro-macro transmission

Terms like
BiM

(
Hu1(x, t)−u2(x,y = 0, t)

)
(7)

are usually referred to in the mathematical literature as production terms by Henry’s or Raoult’s law; see
[4]. The special feature of our scenario is that the term (7) bridges two distinct spatial scales: one macro
with x ∈Ω and one micro with y ∈ Y . We call this micro-macro transmission condition.

It is important to note that in the subsequent analysis we can replace (7) by a more general nonlinear
relationship

B(u1,u2).

In that case assumption (A2) needs to be replaced, for instance, by (A2’)

B ∈C1([0,M1]× [0,M2];R), B globally Lipschitz in both arguments , (8)

where M1 and M2 are sufficiently large positive constants1. Note that a derivation of the precise structure
of B by taking into account (eventually by averaging of) the underlying microstructure information is
still an open problem.

2.4 Weak formulation

As a next step, we first reformulate our problem (2), (3), (4) in an equivalent formulation that is more
suitable for numerical treatment. We introduce the substitution ũ1 := u1−uD

1 to obtain

∂t ũ1−d1∂xxũ1 = d2∂yu2|y=0, in Ω, (9a)
∂tu2−d2∂yyu2 =−ζ (u2,u3), in Ω×Y, (9b)
∂tu3−d3∂yyu3 = ζ (u2,u3), in Ω×Y, (9c)

∂tu4 = η(u3|y=`,u4), in Ω, (9d)

together with boundary conditions

ũ1 = 0, on {x = 0}×S, (10a)
d1∂xũ1 = 0, on {x = L}×S, (10b)

−d2∂yu2 = BiM
(
H(ũ1 +uD

1 )−u2
)
, on Ω×{y = 0}×S, (10c)

d2∂yu2 = 0, on Ω×{y = `}×S, (10d)
−d3∂yu3 = 0, on Ω×{y = 0}×S, (10e)

d3∂yu3 =−η(u3,u4), on Ω×{y = `}×S, (10f)

1Typical choices for M1,M2 are the L∞-estimates on u1 and u2; cf. [5] (Lemma 2) such M1,M2 do exist.
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and initial conditions
ũ1 = u0

1−uD
1 =: ũ0

1, on Ω×{t = 0},
u2 = u0

2, on Ω×Y ×{t = 0},
u3 = u0

3, on Ω×Y ×{t = 0},
u4 = u0

4, on Ω×{t = 0}.

(11)

We refer to the system (9), (10), (11) as problem (P). Also, for the ease of notation, we denote ũ1 again
as u1 and ũ0

1 as u0
1.

Now, we can introduce our concept of weak solution.

Definition 1 (Concept of weak solution). The vector of functions (u1,u2,u3,u4) with

u1 ∈ L2(S,H1
0 (Ω)), (12)

∂tu1 ∈ L2(S×Ω), (13)

ui ∈ L2(S,L2(Ω,H1(Y ))), i ∈ {2,3}, (14)

∂tui ∈ L2(S×Ω×Y ), i ∈ {2,3}, (15)

u4(·,x,y) ∈ H1(S), for a.e. (x,y) ∈Ω×Y, (16)

is called a weak solution to problem (P) if the identities∫
Ω

∂tu1ϕ1 +d1

∫
Ω

∂xu1∂xϕ1 =
∫

Ω

∂yu2|y=0ϕ1,∫
Ω

∫
Y

∂tu2ϕ2 +d2

∫
Ω

∫
Y

∂yu2∂yϕ2 =−
∫

Ω

∫
Y

ζ (u2,u3)ϕ2−
∫

Ω

∂yu2|y=0ϕ2,∫
Ω

∫
Y

∂tu3ϕ3 +d3

∫
Ω

∫
Y

∂yu3∂yϕ3 =
∫

Ω

∫
Y

ζ (u2,u3)ϕ3−
∫

Ω

η(u3|y=`,u4)ϕ3,

and

∂tu4 = η(u3|y=`,u4),

hold for a.e. t ∈ S and for all ϕ := (ϕ1,ϕ2,ϕ3) ∈ H1
0 (Ω)×

[
L2(Ω;H1(Y ))

]2.

We refer the reader to [5, Theorem 3] for statements regarding the global existence and uniqueness of
such weak solutions to problem (P); see also [19] for the analysis on a closely related problem.

The main question we are dealing with here is:

How to approximate the weak solution in an easy and efficient way, consistent with the structure of the
model and the regularity of the data and parameters indicated in (A1)–(A4)?

3 Numerical scheme

In order to solve numerically our multiscale system (2)–(4), we use a semi-discrete approach leaving the
time variable continuous and discretizing both space variables x and y by finite differences on rectangular
grids. In the following paragraphs we introduce the necessary notation, the scheme and discrete scalar
products and norms.
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3.1 Grids and grid functions

For spatial discretization, we subdivide the domain Ω into Nx equidistant subintervals, the domain Y into
Ny equidistant subintervals and we denote by hx := L/Nx, hy := `/Ny, the corresponding spatial step sizes.
We denote by h the vector (hx,hy) with length |h|.

Let

Ωh := {xi := ihx | i = 0, . . . ,Nx},
Ω

o
h := {xi | i = 1, . . . ,Nx},

Yh := {y j := jhy | i = 0, . . . ,Ny},
Ω

e
h := {xi+1/2 := (i+1/2)hx | i = 0, . . . ,Nx−1},

Y e
h := {y j+1/2 := ( j+1/2)hy | i = 0, . . . ,Ny−1},

be, respectively, grid of all nodes in Ω, grid of nodes in Ω without the node at x = 0 (where Dirichlet
boundary condition will be imposed), grid of all nodes in Y , grid of nodes located in the middle of
subintervals of Ωh, and grid of nodes located in the middle of subintervals of Yh. Finally, we define grids
ωh := Ωh×Yh and ωe

h := Ωh×Y e
h .

Next, we introduce grid functions defined on the grids just described. Let Gh := {uh | uh : Ωh→ R},
G o

h := {uh | uh : Ωo
h → R}and Eh := {vh|vh : Ωe

h → R} be sets of grid functions approximating macro
variables on Ω. Let Fh := {uh | uh : ωh → R} and Hh := {vh | vh : ωe

h → R} be sets of grid functions
approximating micro variables on Ω×Y . These grid functions can be identified with vectors in RN ,
whose elements are the values of the grid function at the nodes of the respective grid. Hence, addition of
functions and multiplication of a function by a scalar are defined as for vectors.

For uh ∈ Gh we denote ui := uh(xi), and for uh ∈Fh we will denote ui j := uh(xi,y j). For vh ∈ Eh we
will denote vi+1/2 := vh(xi+1/2), and for vh ∈Hh we will denote vi, j+1/2 := vh(xi,y j+1/2).

We frequently use functions from Fh restricted to the sets Ωh×{y= 0} or Ωh×{y= `}. For uh ∈Fh,
we will denote these restrictions as uh|y=0 and uh|y=`, and we will interpret them as functions from Gh,
i.e., uh|y=0 ∈ Gh and uh|y=` ∈ Gh.

3.2 Discrete operators

In this section, we define difference operators defined on linear spaces of grid functions in such a way
they mimic properties of the corresponding differential operators and, together with the scalar products
defined in Sec. 3.4, fulfill similar integral identities.

The discrete gradient operators ∇h and ∇yh are defined as

∇h : Gh→ Eh, (∇huh)i+ 1
2

:=
ui+1−ui

hx
, uh ∈ Gh,

∇yh : Fh→Hh, (∇yhuh)i, j+ 1
2

:=
ui, j+1−ui j

hy
, uh ∈Fh,

while the discrete divergence operators divh and divyh is

divh : Eh→ G o
h , (divh vh)i :=

vi+ 1
2
−vi− 1

2

hx
, vh ∈ Eh,

divyh : Hh→Fh, (divyh vh)i j :=
vi, j+ 1

2
−vi, j− 1

2

hy
, vh ∈Hh.
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The discrete Laplacian operators ∆h and ∆yh are defined as ∆h := divh ∇h : Gh→ G o
h and ∆yh := divyh ∇yh :

Fh→Fh, i.e., the following standard 3-point stencils are obtained:

(∆huh)i =
ui−1−2ui +ui+1

h2
x

, uh ∈ Gh,

(∆yhuh)i j =
ui, j−1−2ui j +ui, j+1

h2
y

, uh ∈Fh.

To complete the definition of the discrete divergence and Laplacian operators, we need to specify
values of grid functions on auxiliary nodes that fall outside their corresponding grid. At a later point, we
obtain these values from the discretization of boundary conditions by centered differences.

3.3 Semi-discrete scheme
We can now construct a semi-discrete scheme for problem (2). Note that we omit the explicit dependence
on t and we interchangeably use the notation duh

dt and u̇h for denoting the derivative of uh with respect to
t.

Definition 2. A quadruple {u1
h,u

2
h,u

3
h,u

4
h} with

u1
h,u

4
h ∈C1([0,T ];Gh) and u2

h,u
3
h ∈C1([0,T ];Fh)

is called semi-discrete solution of (2), if it satisfies the following system of ordinary differential equations

du1
h

dt
= d1∆hu1

h−BiM
(
H(u1

h +uD
1 )−u2

h|y=0
)
, on Ω

o
h, (17a)

du2
h

dt
= d2∆yhu2

h−ζ (u2
h,u

3
h), on ωh, (17b)

du3
h

dt
= d3∆yhu3

h +ζ (u2
h,u

3
h), on ωh, (17c)

du4
h

dt
= η(u3

h|y=`,u4
h), on Ωh, (17d)

together with the discrete boundary conditions (i = 0, . . . ,Nx)

u1
0 = 0, (18a)

d1
1
2

(
(∇hu1

h)Nx+
1
2
+(∇hu1

h)Nx− 1
2

)
= 0, (18b)

−d2
1
2

(
(∇yhu2

h)i,− 1
2
+(∇yhu2

h)i, 1
2

)
= BiM

(
H(u1

i +uD
1 )−u2

i,0
)
, (18c)

d2
1
2

(
(∇yhu2

h)i,Ny+
1
2
+(∇yhu2

h)i,Ny− 1
2

)
= 0, (18d)

−d3
1
2

(
(∇yhu3

h)i,− 1
2
+(∇yhu3

h)i, 1
2

)
= 0, (18e)

d3
1
2

(
(∇yhu3

h)i,Ny+
1
2
+(∇yhu3

h)i,Ny− 1
2

)
=−η(u3

i,Ny ,u
4
i ), (18f)

and the initial conditions
u1

h(0) = P1
h u0

1, u2
h(0) = P2

h u0
2,

u3
h(0) = P2

h u0
3, u4

h(0) = P1
h u0

4,
(19)

where P1
h and P2

h are suitable projection operators from Ω to Ωh and from Ω×Y to ωh, respectively.
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Remark 1. The boundary conditions (18b)–(18f) are a centered-difference approximation of conditions
(3) and are written so as to stress the relation between the two. Using the definition of discrete ∇h and
∇yh operators, (18) can be rewritten in terms of auxiliary values of uk

h, k = 1, . . . ,4, on nodes outside the
grids as follows:

u1
0 = 0, (20a)

u1
Nx+1 = u1

Nx−1, (20b)

u2
i,−1 = u2

i,1 +
2hy

d2
BiM

(
H(u1

i +uD
1 )−u2

i,0
)
, (20c)

u2
i,Ny+1 = u2

i,Ny−1, (20d)

u3
i,−1 = u3

i,1, (20e)

u3
i,Ny+1 = u3

i,Ny−1−
2hy

d3
η(u3

i,Ny ,u
4
i ). (20f)

Proposition 3. Assume (A1)–(A4) to be fulfilled. Then there exists a unique semi-discrete solution

{u1
h,u

2
h,u

3
h,u

4
h} ∈C1([0,T ];Gh)×C1([0,T ];Fh)×C1([0,T ];Gh)×C1([0,T ];Fh)

in the sense of Definition 2.

Proof. The proof, based on the standard ode argument, follows in a straightforward manner.

3.4 Discrete scalar products and norms
Next, we introduce scalar products and norms on the spaces of grid functions Gh, Eh, Fh, Gh and we show
some basic integral identities for the difference operators.

Let (γ1
i )

Nx
i=0 and (γ2

j )
Ny
j=0 be such that

γ
1
i :=

{
1 1≤ i≤ Nx−1,
1
2 i ∈ {0,Nx},

, γ
2
j :=

{
1 1≤ j ≤ Ny−1,
1
2 j ∈ {0,Ny},

(21)

and define the following discrete L2 scalar products and the corresponding discrete L2 norms

(uh,vh)Gh
:= hx ∑

xi∈Ωh

γ
1
i uivi, uh,vh ∈ Gh, (22)

‖uh‖Gh
:=
√
(uh,uh)Gh , uh ∈ Gh, (23)

(uh,vh)G o
h

:= hx ∑
xi∈Ωo

h

γ
1
i uivi, uh,vh ∈ G o

h , (24)

‖uh‖G o
h

:=
√

(uh,uh)G o
h
, uh ∈ G o

h , (25)

(uh,vh)Fh
:= hxhy ∑

xi j∈ωh

γ
1
i γ

2
j ui jvi j, uh,vh ∈Fh, (26)

‖uh‖Fh
:=
√

(uh,uh)Fh , uh ∈Fh, (27)
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(uh,vh)Eh
:= hx ∑

xi+1/2∈Ωe
h

ui+1/2vi+1/2, uh,vh ∈ Eh, (28)

‖uh‖Eh
:=
√

(uh,uh)Eh , uh ∈ Eh, (29)

(uh,vh)Hh
:= hxhy ∑

xi, j+1/2∈ωe
h

γ
1
i ui, j+1/2vi, j+1/2, uh,vh ∈Hh, (30)

‖uh‖Hh
:=
√
(uh,uh)Hh , uh ∈Hh. (31)

It can be shown that a discrete equivalent of Green’s formula holds for these scalar products as well
as other identities as is stated in the following lemmas.

Lemma 4 (Discrete macro Green-like formula). Let uh ∈ Gh and vh ∈ Eh such that

u0 = 0, uNx+1 = uNx−1, (32)
vNx+1/2 =−vNx−1/2. (33)

Then the following identity holds:

(uh,divh vh)G o
h
=−(∇huh,vh)Eh . (34)

Lemma 5 (Discrete micro-macro Green-like formula). Let uh ∈Fh and vh ∈Hh such that

−1
2
(
vk,−1/2 +vk,1/2

)
= δ

1
k ,

1
2

(
vk,Ny−1/2 +vk,Ny+1/2

)
= δ

2
k , (35)

uk,−1 = uk,1 +2hyδ
1
k , uk,Ny+1 = uk,Ny−1 +2hyδ

2
k , (36)

for i = 0, . . . ,Nx, and δ 1
h ,δ

2
h ∈ Gh. Then the following identity holds:

(uh,divyh vh)Fh =−(∇yhuh,vh)Hh +(uh|y=0,δ
1
h )Gh +(uh|y=Ny ,δ

2
h )Gh . (37)

We also frequently make use of the following discrete trace inequality:

Lemma 6 (Discrete trace inequality). For uh ∈Fh there exists a positive constant C depending only on
Ω such that

‖uh|y=`‖Gh ≤C(‖uh‖Fh +‖∇yhuh‖Hh). (38)

Proof. Our proof follows the line of thought of [10]. We have that for uh ∈Fh

|ui,Ny | ≤
Ny−1

∑
j=0
|ui, j+1−ui j|+

Ny

∑
j=0

γ
2
j hy|ui j|.

Squaring both sides of the inequality, we get

(ui,Ny)
2 ≤ Ai +Bi, (39)

where

Ai := 2

(
Ny−1

∑
j=0
|ui, j+1−ui j|

)2

and Bi := 2

(
Ny

∑
j=0

γ
2
j hy|ui j|

)2

.
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Applying the Cauchy-Schwarz inequality to Ai, we obtain

Ai ≤ 2
Ny−1

∑
j=0

hy

(
ui, j+1−ui j

hy

)2 Ny−1

∑
j=0

hy = 2`
Ny−1

∑
j=0

hy

(
ui, j+1−ui j

hy

)2

.

Similarly, using the Cauchy-Schwarz inequality we get for Bi

Bi ≤ 2
Ny

∑
j=0

γ
2
j hy(ui j)

2
Ny

∑
j=0

γ
2
j hy = 2`

Ny

∑
j=0

γ
2
j hy(ui j)

2.

Multiplying (39) by γ1
i hx, summing over i ∈ {0, . . . ,Nx} and then using the bounds on Ai and Bi, it yields

that:
Nx

∑
i=0

γ
1
i hx(ui,Ny)

2 ≤ 2`

(
Nx

∑
i=0

Ny−1

∑
j=0

γ
1
i hxhy

(
(∇yhuh)i, j+ 1

2

)2
+ ∑

xi j∈ωh

γ
1
i γ

2
j hxhy(ui j)

2

)
,

that is
‖uh|y=`‖2

Gh
≤C

(
‖∇yhuh‖2

Hh
+‖uh‖2

Fh

)
,

from which the claim of the Lemma follows directly.

4 Approximation estimates
The aim of this section is to derive a priori estimates on the semi-discrete solution. Based on weak
convergence-type arguments, the estimates will ensure, at least up to subsequences, a (weakly) convergent
way to reconstruct the weak solution to problem (P).

4.1 A priori estimates
This is the place where we use the tools developed in section 3.

In subsequent paragraphs, we refer to the following relations: From scalar product of (17a) with
ϕ1

h ∈ Gh, (17b) and (17c) with ϕ2
h ∈Fh and ϕ3

h , respectively, and (17d) with ϕ4
h ∈ Gh to obtain

(u̇1
h,ϕ

1
h )G o

h
= d1(∆hu1

h,ϕ
1
h )G o

h
−BiM

(
Hu1

h−u2
h|y=0,ϕ

1
h
)
G o

h
, (40)

(u̇2
h,ϕ

2
h )Fh = d2(∆yhu2

h,ϕ
2
h )Fh −α(u2

h,ϕ
2
h )Fh +β (u3

h,ϕ
2
h )Fh , (41)

(u̇3
h,ϕ

3
h )Fh = d3(∆yhu3

h,ϕ
3
h )Fh +α(u2

h,ϕ
3
h )Fh −β (u3

h,ϕ
3
h )Fh , (42)

(u̇4
h,ϕ

4
h )Gh =

(
η(u3

h|y=`,u4
h),ϕ

4
h
)
Gh
. (43)

Note that u1
h and ∇hϕ1

h satisfy the assumptions of Lemma 4, u2
h and ∇yhϕ2

h satisfy the assumptions of
Lemma 5 with δ 1

k = BiM
d2

(Hu1
k−u2

k,0) and δ 2
k = 0, and u3

h and ∇yhϕ3
h with δ 1

k = 0 and δ 2
k =− 1

d3
η(u3

k,Ny
,u4

k).
Thus, using Lemmas 4, 5 and properties of the discrete scalar products we get

(u̇1
h,ϕ

1
h )Gh +d1(∇hu1

h,∇hϕ
1
h )Eh =−BiM

(
Hu1

h−u2
h|y=0,ϕ

1
h
)
Gh
, (44)

(u̇2
h,ϕ

2
h )Fh +d2(∇yhu2

h,∇yhϕ
2
h )Hh = BiM(Hu1

h−u2
h|y=0,ϕ

2
h |y=0)Gh −α(u2

h,ϕ
2
h )Fh +β (u3

h,ϕ
2
h )Fh , (45)

(u̇3
h,ϕ

3
h )Fh +d3(∇yhu3

h,∇yhϕ
3
h )Hh =−

(
η(u3

h|y=`,u4
h),ϕ

3
h |y=`

)
Gh
+α(u2

h,ϕ
3
h )Fh −β (u3

h,ϕ
3
h )Fh , (46)

(u̇4
h,ϕ

4
h )Gh =

(
η(u3

h|y=`,u4
h),ϕ

4
h
)
Gh
. (47)
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Lemma 7 (Discrete energy estimates). Let {u1
h,u

2
h,u

3
h,u

4
h} be a semi-discrete solution of (2) for some

T > 0. Then it holds that

max
t∈S

(
‖u1

h(t)‖2
Gh
+‖u2

h(t)‖2
Fh

+‖u3
h(t)‖2

Fh
+‖u4

h(t)‖2
Gh

)
≤C, (48)∫ T

0

(
‖∇hu1

h‖2
Eh
+‖∇yhu2

h‖2
Hh

+‖∇yhu3
h‖2

Hh

)
dt ≤C, (49)

where C := C̄
(
‖u1

h(0)‖2
Gh
+‖u2

h(0)‖2
Fh

+‖u3
h(0)‖2

Fh
+‖u4

h(0)‖2
Gh

)
, with C̄ being a positive constant inde-

pendent of hx, hy.

Proof. In (44)–(47), taking (ϕ1
h ,ϕ

2
h ,ϕ

3
h ,ϕ

4
h ) = (u1

h,u
2
h,u

3
h,u

4
h), summing the equalities, applying Young’s

inequality on terms with (u2
h,u

3
h)Fh , dropping the negative terms on the right-hand side, and multiplying

the resulting inequality by 2 give

d
dt

(
‖u1

h‖2
Gh
+‖u2

h‖2
Fh

+‖u3
h‖2

Fh
+‖u4

h‖2
Gh

)
+2d1‖∇hu1

h‖2
Eh
+2d2‖∇yhu2

h‖2
Hh

+2d3‖∇yhu3
h‖2

Hh

≤−2BiM(Hu1
h−u2

h|y=0,u1
h)Gh +2BiM(Hu1

h−u2
h|y=0,u2

h|y=0)Gh

+C1‖u2
h‖2

Fh
+C1‖u3

h‖2
Fh

+2
(
η(u3

h|y=`,u4
h),u

4
h−u3

h|y=`

)
Gh
,

where C1 := α +β > 0. Expanding the first two terms on the right-hand side we get

−2(Hu1
h−u2

h|y=0,u1
h)Gh +2(Hu1

h−u2
h|y=0,u2

h|y=0)Gh =−2H‖u1
h‖2

Gh

+2(1+H)(u1
h,u

2
h|y=0)Gh −2‖u2

h|y=0‖2
Gh
≤ 1+H

ε
‖u1

h‖2
Gh
+
(
(1+H)ε−2

)
‖u2

h|y=0‖2
Gh
,

where we used Young’s inequality with ε > 0. Choosing ε sufficiently small, the coefficient in front of
the last term is negative, so we have that

−2(Hu1
h−u2

h|y=0,u1
h)Gh +2(Hu1

h−u2
h|y=0,u2

h|y=0)Gh ≤C2‖u1
h‖2

Gh
,

where C2 := 1+H
ε

> 0, and thus

d
dt

(
‖u1

h‖2
Gh
+‖u2

h‖2
Fh

+‖u3
h‖2

Fh
+‖u4

h‖2
Gh

)
+2d1‖∇hu1

h‖2
Eh
+2d2‖∇yhu2

h‖2
Hh

+2d3‖∇yhu3
h‖2

Hh

≤C2‖u1
h‖2

Gh
+C1‖u2

h‖2
Fh

+C1‖u3
h‖2

Fh
+2
(
η(u3

h|y=`,u4
h),u

4
h−u3

h|y=`

)
Gh
. (50)

For the last term on the right-hand side of the previous inequality we have

2
(
η(u3

h|y=`,u4
h),u

4
h−u3

h|y=`

)
Gh

= 2k
(
R(u3

h|y=`)Q(u4
h),u

4
h
)
Gh
−2k

(
R(u3

h|y=`)Q(u4
h),u

3
h|y=`

)
Gh︸ ︷︷ ︸

≤0

≤ 2kc̄q(R(u3
h|y=`),u4

h
)
Gh
≤ kc̄q

(
ε‖R(u3

h|y=`)‖2
Gh
+

1
ε
‖u4

h‖2
Gh

)
≤ kc̄q

(
ε‖u3

h|y=`‖2
Gh
+

1
ε
‖u4

h‖2
Gh

)
≤ kc̄q

(
C3ε‖u3

h‖2
Fh

+C3ε‖∇yhu3
h‖2

Hh
+

1
ε
‖u4

h‖2
Gh

)
,

where we used the assumption (A1), Young’s inequality with ε > 0 and the discrete trace inequality (38)
with the constant C3 > 0. Using the result in (50) we obtain

d
dt

(
‖u1

h‖2
Gh
+‖u2

h‖2
Fh

+‖u3
h‖2

Fh
+‖u4

h‖2
Gh

)
+d1‖∇hu1

h‖2
Eh
+d2‖∇yhu2

h‖2
Hh

+C4‖∇yhu3
h‖2

Hh

≤C2‖u1
h‖2

Gh
+C1‖u2

h‖2
Fh

+C5‖u3
h‖2

Fh
+C6‖u4

h‖2
Gh
, (51)
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where C4 := d3−kc̄qC3ε can be made positive for ε sufficiently small, C5 :=C1+kc̄qC3ε , and C6 := kc̄q 1
ε

.
Discarding the terms with discrete gradient, we get

d
dt

(
‖u1

h‖2
Gh
+‖u2

h‖2
Fh

+‖u3
h‖2

Fh
+‖u4

h‖2
Gh

)
≤C7

(
‖u1

h‖2
Gh
+‖u2

h‖2
Fh

+‖u3
h‖2

Fh
+‖u4

h‖2
Gh

)
,

where C7 := max{C1,C2,C5,C6}. Applying the Gronwall’s lemma to the previous inequality we obtain

max
t∈S

(
‖u1

h(t)‖2
Gh
+‖u2

h(t)‖2
Fh

+‖u3
h(t)‖2

Fh
+‖u4

h(t)‖2
Gh

)
≤
(
‖u1

h(0)‖2
Gh
+‖u2

h(0)‖2
Fh

+‖u3
h(0)‖2

Fh
+‖u4

h(0)‖2
Gh

)
eC7T . (52)

Finally, integrating (51) over [0,T ] and using (52) gives∫ T

0

(
‖∇hu1

h‖2
Eh
+‖∇yhu2

h‖2
Hh

+‖∇yhu3
h‖2

Hh

)
dt

≤ 1+C7TeC7T

C8

(
‖u1

h(0)‖2
Gh
+‖u2

h(0)‖2
Fh

+‖u3
h(0)‖2

Fh
+‖u4

h(0)‖2
Gh

)
, (53)

where C8 := min{d1,d2,C4}. The claim of the lemma directly follows.

Lemma 8. Let {u1
h,u

2
h,u

3
h,u

4
h} be a semi-discrete solution of (2) for some T > 0. Then it holds that

max
t∈S

(
‖u̇1

h(t)‖2
Gh
+‖u̇2

h(t)‖2
Fh

+‖u̇3
h(t)‖2

Fh

)
≤C, (54)∫ T

0

(
‖∇hu̇1

h‖2
Eh
+‖∇yhu̇2

h‖2
Hh

+‖∇yhu̇3
h‖2

Hh

)
dt ≤C, (55)

where C is a positive constant independent of hx, hy.

Proof. We follow the steps of [19, Theorem 4]. Differentiate (44)–(46) with respect to time, take ϕ i
h =

u̇i
h, i = 1, . . . ,3, discard the negative terms on the right-hand side and sum the inequalities to obtain

1
2

d
dt

(
‖u̇1

h‖2
Gh
+‖u̇2

h‖2
Fh

+‖u̇3
h‖2

Fh

)
+d1‖∇hu̇1

h‖2
Eh
+d2‖∇yhu̇2

h‖2
Hh

+d3‖∇yhu̇3
h‖2

Hh

≤ BiM(1+H)
(
u̇1

h, u̇
2
h|y=0

)
Gh
−BiM‖u̇2

h|y=0‖2
Gh
+(α +β )

(
u̇2

h, u̇
3
h
)
Fh

−
(
∂rη(u3

h|y=`,u4
h)u̇

3
h|y=`+∂sη(u3

h|y=`,u4
h)u̇

4
h, u̇

3
h|y=`

)
Gh
.

As in the proof of Lemma 7, for the first two terms on the right-hand side we have that

BiM(1+H)
(
u̇1

h, u̇
2
h|y=0

)
Gh
−BiM‖u̇2

h|y=0‖2
Gh
≤C1‖u̇1

h‖2
Gh
,

and for the third term
(α +β )

(
u̇2

h, u̇
3
h
)
Fh
≤C2

(
‖u̇2

h‖2
Fh

+‖u̇3
h‖2

Fh

)
.

Using the Lipschitz property of η , together with Schwarz’s and Young’s inequalities, and assuming the
structural restriction ∂rη > 0, we obtain for the last term on the right-hand side that

−
(
∂rη u̇3

h|y=`+∂sη u̇4
h, u̇

3
h|y=`

)
Gh

=−
(
∂rη u̇3

h|y=`, u̇3
h|y=`

)
Gh
−
(
∂sη u̇4

h, u̇
3
h|y=`

)
Gh

≤−
(
∂rη u̇3

h|y=`, u̇3
h|y=`

)
Gh︸ ︷︷ ︸

≤0

+C
(

1
2ε

∥∥u̇4
h

∥∥2
Gh
+

ε

2
‖u̇3

h|y=`

∥∥2
Gh

)
.
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Choosing ε sufficiently small, we get that

−
(
∂rη(u3

h|y=`,u4
h)u̇

3
h|y=`+∂sη(u3

h|y=`,u4
h)u̇

4
h, u̇

3
h|y=`

)
Gh
≤C3

∥∥u̇4
h

∥∥2
Gh
.

Putting the obtained results together we finally obtain that

1
2

d
dt

(
‖u̇1

h‖2
Gh
+‖u̇2

h‖2
Fh

+‖u̇3
h‖2

Fh

)
+d1‖∇hu̇1

h‖2
Eh
+d2‖∇yhu̇2

h‖2
Hh

+d3‖∇yhu̇3
h‖2

Hh

≤C1‖u̇1
h‖2

Gh
+C2

(
‖u̇2

h‖2
Fh

+‖u̇3
h‖2

Fh

)
+C3‖u̇4

h‖2
Gh
. (56)

Grönwall’s inequality gives that

max
t∈S

(
‖u̇1

h‖2
Gh
+‖u̇2

h‖2
Fh

+‖u̇3
h‖2

Fh

)
≤C4

(
‖u̇1

h(0)‖2
Gh
+‖u̇2

h(0)‖2
Fh

+‖u̇3
h(0)‖2

Fh

)
. (57)

In order to estimate the right-hand side in the previous inequality, we evaluate (40)–(42) at t = 0 and test
with

(
u̇1

h(0), u̇
2
h(0), u̇

3
h(0)

)
to get

‖u̇1
h(0)‖2

Gh
+‖u̇2

h(0)‖2
Fh

+‖u̇3
h(0)‖2

Fh
= d1(∆hu1

h(0), u̇
1
h(0))G o

h
+d2(∆yhu2

h(0), u̇
2
h(0))Fh

+d3(∆yhu3
h(0), u̇

3
h(0))Fh −BiM

(
Hu1

h(0)−u2
h(0)|y=0, u̇1

h(0)
)
Gh

+(αu2
h(0)−βu3

h(0), u̇
3
h(0)− u̇2

h(0))Fh .

Schwarz’s inequality and Young’s inequality (with ε > 0 chosen sufficiently small) together with the
regularity of the initial data yield the estimate

‖u̇1
h(0)‖2

Gh
+‖u̇2

h(0)‖2
Fh

+‖u̇3
h(0)‖2

Fh
≤C,

where C does not depend on the spatial step sizes. Returning back to (56), integrating it with respect to t
and using (57) gives the claim of the lemma.

In the following lemma we derive additional a priori estimates that will finally allow us to pass in the
limit in the non-linear terms. In order to avoid introducing new grids, grid functions and associated scalar
products for finite differences in x variable, we will resort to sum notation in this proof. To this end, for
uh ∈Fh, let δ+

x ui j, δ−x ui j, δ+
y ui j, δ−y ui j denote the forward and backward difference quotients at xi j in x-

and y-direction, i.e.,

(δ+
x uh)i j :=

ui+1, j−ui j

hx
, (δ−x uh)i j :=

ui j−ui−1, j

hx
,

(δ+
y uh)i j :=

ui, j+1−ui j

hy
, (δ−y uh)i j :=

ui j−ui, j−1

hy
.

Lemma 9 (Improved a priori estimates). Let {u1
h,u

2
h,u

3
h,u

4
h} be a semi-discrete solution of (2) for some

T > 0. Then it holds that

max
t∈S

(
hxhy

Nx−1

∑
i=0

Ny

∑
j=0

(δ+
x u2

i j)
2 +hxhy

Nx−1

∑
i=0

Ny

∑
j=0

(δ+
x u3

i j)
2
)
≤C, (58)

∫ T

0
hxhy

Nx−1

∑
i=0

Ny−1

∑
j=0

(δ+
x δ

+
y u2

i j)
2 dt +

∫ T

0
hxhy

Nx−1

∑
i=0

Ny−1

∑
j=0

(δ+
x δ

+
y u3

i j)
2 dt ≤C, (59)

where C is a positive constant independent of hx, hy.
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Proof. Following the steps of [19, Theorem 5], introduce a function ϑ ∈C∞
0 (Ω) such that 0≤ ϑ ≤ 1 and

let ϑh := ϑ |Ωh ∈ Gh. Test (17b) with −δ−x (ϑ 2
i δ+

x u2
h)i j, (17c) with −δ−x (ϑ 2

i δ+
x u3

h)i j, and sum over ωh to
form relations analogous to (45), (46). We get

−hy

Nx

∑
i=1

Ny

∑
j=0

γ
1
i γ

2
j u̇2

i jδ
−
x (ϑ 2

h δ
+
x u2

h)i j−d2hy

Nx

∑
i=1

Ny−1

∑
j=0

γ
1
i γ

2
j δ

+
y u2

i jδ
+
y (δ−x (ϑ 2

h δ
+
x u2

h))i j

=−Bim
Nx

∑
i=1

γ
1
i (Hu1

i −u2
i,0)δ

−
x (ϑ 2

i δ
+
x u2

h)i,0 +αhy

Nx

∑
i=1

Ny

∑
j=0

γ
1
i γ

2
j u2

i jδ
−
x (ϑ 2

i δ
+
x u2

h)i j

−βhy

Nx

∑
i=1

Ny

∑
j=0

γ
1
i γ

2
j u3

i jδ
−
x (ϑ 2

i δ
+
x u2

h)i j,

−hy

Nx

∑
i=1

Ny

∑
j=0

γ
1
i γ

2
j u̇3

i jδ
−
x (ϑ 2

h δ
+
x u3

h)i j−d3hy

Nx

∑
i=1

Ny−1

∑
j=0

γ
1
i γ

2
j δ

+
y u3

i jδ
+
y (δ−x (ϑ 2

h δ
+
x u3

h))i j

=
Nx

∑
i=1

γ
1
i η(u3

i,Ny ,u
4
i )δ
−
x (ϑ 2

i δ
+
x u3

h)i,Ny −αhy

Nx

∑
i=1

Ny

∑
j=0

γ
1
i γ

2
j u2

i jδ
−
x (ϑ 2

i δ
+
x u3

h)i j

+βhy

Nx

∑
i=1

Ny

∑
j=0

γ
1
i γ

2
j u3

i jδ
−
x (ϑ 2

i δ
+
x u3

h)i j.

Summing the previous two equalities and using the discrete Green’s theorem analogous to (34), Schwarz’s
inequality and Young’s inequality we obtain

1
2

d
dt

(
hy

Nx−1

∑
i=0

Ny

∑
j=0
|ϑiδ

+
x u2

i j|2 +hy

Nx−1

∑
i=0

Ny

∑
j=0
|ϑiδ

+
x u3

i j|2
)
+d2hy

Nx−1

∑
i=0

Ny−1

∑
j=0
|ϑiδ

+
x δ

+
y u2

i j|2

+d3hy

Nx−1

∑
i=0

Ny−1

∑
j=0
|ϑiδ

+
x δ

+
y u3

i j|2 ≤ BimHC1

Nx−1

∑
i=0
|ϑiδ

+
x u1

i |2 +C2hy

Nx−1

∑
i=0

Ny

∑
j=0

(ϑiδ
+
x u2

i j)
2

+C3hy

Nx−1

∑
i=0

Ny

∑
j=0

(ϑiδ
+
x u3

i j)
2−

Nx−1

∑
i=0

(δ+
x η(u3

i,Ny ,u
4
i ))(ϑ

2
i δ

+
x u3

i,Ny). (60)

We rewrite the last term on the right-hand side as

− k
Nx−1

∑
i=0

(δ+
x (R(u3

i,Ny)Q(u4
i )))(ϑ

2
i δ

+
x u3

i,Ny)

=−k
Nx−1

∑
i=0

(
Q(u4

i )δ
+
x R(u3

i,Ny)+R(u3
i+1,Ny

)δ+
x Q(u4

i )
)
(ϑ 2

i δ
+
x u3

i,Ny)

=−k
Nx−1

∑
i=0

ϑ
2
i Q(u4

i )δ
+
x R(u3

i,Ny)δ
+
x u3

i,Ny︸ ︷︷ ︸
≤0

−k
Nx−1

∑
i=0

R(u3
i+1,Ny

)δ+
x Q(u4

i )(ϑ
2
i δ

+
x u3

i,Ny),

where we used the monotonicity of R and boundedness of Q. To estimate the last term we exploit the
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Lipschitz continuity and boundedness of Q and use the discrete trace theorem so that

− k
Nx−1

∑
i=0

R(u3
i+1,Ny

)δ+
x Q(u4

i )(ϑ
2
i δ

+
x u3

i,Ny)≤C4

Nx−1

∑
i=0

ϑ
2
i |δ+

x u3
i,Ny δ

+
x u4

i |

≤ C4ε

2

Nx−1

∑
i=0

(ϑiδ
+
x u3

i,Ny)
2 +

C4

2ε

Nx−1

∑
i=0

(ϑiδ
+
x u4

i )
2 ≤C5εhy

Nx−1

∑
i=0

Ny

∑
j=0

(ϑiδ
+
x u3

i j)
2

+C5εhy

Nx−1

∑
i=0

Ny−1

∑
j=0

(ϑiδ
+
x δ

+
y u3

i j)
2 +

C4

2ε

Nx−1

∑
i=0

(ϑiδ
+
x u4

i )
2.

Using the latter result in (60), we arrive at

1
2

d
dt

(
hy

Nx−1

∑
i=0

Ny

∑
j=0

(ϑiδ
+
x u2

i j)
2 +hy

Nx−1

∑
i=0

Ny

∑
j=0

(ϑiδ
+
x u3

i j)
2
)
+d2hy

Nx−1

∑
i=0

Ny−1

∑
j=0

(ϑiδ
+
x δ

+
y u2

i j)
2

+(d3−C5ε)hy

Nx−1

∑
i=0

Ny−1

∑
j=0

(ϑiδ
+
x δ

+
y u3

i j)
2 ≤ BimHC1

Nx−1

∑
i=0
|ϑiδ

+
x u1

i |2 +C2hy

Nx−1

∑
i=0

Ny

∑
j=0

(ϑiδ
+
x u2

i j)
2

+(C3 +C5ε)hy

Nx−1

∑
i=0

Ny

∑
j=0

(ϑiδ
+
x u3

i j)
2 +

C4

2ε

Nx−1

∑
i=0

(ϑiδ
+
x u4

i )
2. (61)

Applying Gronwall’s inequality and integrating with respect to time we obtain the claim of the lemma.

5 Interpolation and compactness
In this section, we derive sufficient results that enable us to show the convergence of semi-discrete solu-
tions of (2). To this end, we firstly introduce extensions of grid functions so that they are defined almost
everywhere in Ω and ω and can be studied by the usual techniques of Lebesgue/Sobolev/Bochner spaces.
Finally, we use the a priori estimates proved in section 4 to show the necessary compactness for the
sequences of extended grid functions.

5.1 Interpolation
In this subsection we introduce extensions of grid functions so that they are defined almost everywhere
in Ω and ω .

Definition 10 (Dual and simplicial grids on Ω). Let Ωh be a grid on Ω as defined in Section 3.1. Define
the dual grid Ω

�
h as

Ω
�
h := {K �

i ⊂ Ω̄ |K �
i := [xi−hx/2,xi +hx/2]∩ Ω̄, xi ∈Ωh},

and the simplicial grid Ω
�
h as

Ω
�
h := {K �

i ⊂ Ω̄ |K �
i := [xi,xi+1]∩ Ω̄, xi ∈Ωh}.

Definition 11 (Dual and simplicial grids on Ω×Y ). Let ωh be a grid on Ω×Y as defined in Section 3.1.
Define the dual grid ω

�
h as

ω
�
h := {L �

i j ⊂ Ω̄× Ȳ |L �
i j := [xi−hx/2,xi +hx/2]

× [y j−hy/2,y j +hy/2]∩ Ω̄× Ȳ , xi ∈Ωh,y j ∈ Yh},
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and the simplicial grid ω
�
h as ω

�
h := ω/

h ∪ω.
h , where

ω
/
h :=

{
L /

i j |L /
i j :=

[
(xi,y j),(xi+1,y j),(xi,y j+1)

]
κ ∩ Ω̄× Ȳ , i = 0, . . . ,Nx−1, j = 0, . . . ,Ny−1

}
,

ω
.
h :=

{
L .

i j |L .
i j :=

[
(xi+1,y j+1),(xi+1,y j),(xi,y j+1)

]
κ ∩ Ω̄× Ȳ , i = 0, . . . ,Nx−1, j = 0, . . . ,Ny−1

}
,

where [x,y,z]κ denotes convex hull of points x,y,z ∈ R2.

Definition 12 (Piecewise constant extension). For a grid function uh we define its piecewise constant
extension ūh as

ūh(x) =

{
ui, x ∈K �

i , uh ∈ Gh,

ui j, x ∈L �
i j , uh ∈Fh.

(62)

Definition 13 (Piecewise linear extension). For a grid function uh ∈ Gh we define its piecewise linear
extension ûh as

ûh(x) = ui +(∇huh)i+1/2(x− xi), x ∈K �
i , uh ∈ Gh, (63)

while for uh ∈Fh we define it as

ûh(x) =

{
ui j +δ+

x ui j(x− xi)+(∇yhuh)i, j+1/2(y− y j), x ∈L /
i j ,

ui+1, j+1 +δ+
x ui, j+1(xi+1− x)+(∇yhuh)i+1, j+1/2(y j− y), x ∈L .

i j .
(64)

The following lemma shows the relation between discrete scalar products of grid functions and scalar
products of interpolated grid functions in L2(Ω) and L2(Ω×Y ) and follows by a direct calculation.

Lemma 14. It holds that

(ūh, v̄h)L2(Ω) = (uh,uh)Gh , uh,vh ∈ Gh,

(∇ûh,∇v̂h)L2(Ω) = (∇huh,∇hvh)Eh , uh,vh ∈ Gh,

(ūh, v̄h)L2(Ω×Y ) = (uh,vh)Fh , uh,vh ∈Fh,

(∇yûh,∇yv̂h)L2(Ω×Y ) = (∇yhuh,∇yhvh)Hh , uh,vh ∈Fh.

5.2 Compactness
In this subsection we prove our main result. To do this we essentially use the preliminary results shown
in the previous paragraphs and the results of [13]. Basically, we show the convergence of semi-discrete
solutions to a weak solution of problem (P). This result is stated in the following theorem.

Theorem 15. Assume (A1)–(A4) to be fulfilled. Then the semi-discrete solution {u1
h, u2

h, u3
h, u4

h} of (2)
exists on [0,T ] for any T > 0 and its interpolate {û1

h, û2
h, û3

h, û4
h} converge in L2(Ω), L2(Ω×Y ), L2(Ω×S),

L2(Ω), respectively, as |h| → 0 to a weak solution (u1, u2, u3, u4) to problem (P) in the sense of Definition
1.

Proof. We start off with recovering the initial data. The definition of interpolation of grid functions leads,
as |h| → 0, to

û1
h(0)→ u0

1 weakly in H1(Ω),

û2
h(0)→ u0

2 weakly in L2(Ω;H1(Y )),

û3
h(0)→ u0

3 weakly in L2(Ω;H1(Y )),

û4
h(0)→ u0

4 weakly in L2(Ω).
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Let hn be a sequence of spatial space sizes such that |h| → 0 as n→ ∞. Consequently, we obtain a
sequence of solutions {u1

hn
,u2

hn
,u3

hn
,u4

hn
} of (17) defined on the whole time interval S.

Let us pass to the limit |h| → 0 in the ODE. Note that η(ū3
hn
|y=`, ū4

hn
) ⇀ q weakly in L2(S;L2(Ω)),

and q still needs to be identified. The way we pass to the limit in the ODE is based on the following
monotonicity-type argument (see [21]): using the monotonicity of η w.r.t. both variables, we can show
that ū4

hn
is a Cauchy sequence, and therefore, it is strongly convergent to u4.

Now, it only remains to pass to the limit in the PDEs. Note that the weak formulation contains a
nonlinear boundary term involving η(·, ·). Exploiting the properties of the interpolations of grid functions
we deduce that the same a priori estimates hold also for the interpolated solution (see also [13]). On this
way, we obtain

{û1
hn
} is bounded in L∞(0,T ;L2(Ω)),

{û1
hn
} is bounded in L2(0,T ;H1(Ω)),

{û2
hn
} is bounded in L∞(0,T ;L2(Ω)),

{û3
hn
} is bounded in L∞(0,T ;L2(Ω)),

{û4
hn
} is bounded in L∞(0,T ;L2(Ω)).

Hence, there exists a subsequence of hn (denoted again by hn), such that

û1
hn
⇀ u1 weakly in L2(S;H1(Ω)),

û2
hn
⇀ u2 weakly in L2(S;L2(Ω)),

û3
hn
⇀ u3 weakly in L2(S;L2(Ω)),

û4
hn
⇀ u4 weakly in L2(S;L2(Ω)).

Since
‖û1

hn
‖L2(S,H1(Ω))+‖∂t û1

hn
‖L2(S,L2(Ω)) ≤C,

Lions-Aubin’s compactness theorem, see [14, Theorem 1], implies that there exists a subset (again de-
noted by û1

hn
) such that

û1
hn
−→ u1 strongly in L2(S×Ω).

To get the desired strong convergence for the cell solutions û2
hn
, û3

hn
, we need the higher regularity with

respect to the variable x, proved in Lemma 9. We remark that the two-scale regularity estimates imply
that

‖û2
hn
‖L2(S;H1(Ω,H1(Y )))+‖û

3
hn
‖L2(S;H1(Ω,H1(Y ))) ≤C.

Moreover, from Lemma 8, we have that

‖∂t û2
hn
‖L2(S×Ω×Y )+‖∂t û3

hn
‖L2(S×Ω×Y ) ≤C.

Since the embedding
H1(Ω,H1(Y )) ↪→ L2(Ω,Hβ (Y ))

is compact for all 1
2 < β < 1, it follows again from Lions-Aubin’s compactness theorem that there exist

subsequences (again denoted û2
hn
, û3

hn
), such that

(û2
hn
, û3

hn
)−→ (u2,u3) strongly in L2(S×L2(Ω,Hβ (Y )), (65)

for all 1
2 < β < 1. Now, (65) together with the continuity of the trace operator

Hβ (Y ) ↪→ L2(∂Y ), for
1
2
< β < 1,

yield the strong convergence of û2
hn

, û3
hn

until the boundary y = 0.
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6 Numerical illustration of the two-scale FD scheme
We close the paper with illustrating the behavior of the main chemical species driving the whole corro-
sion process, namely of H2S(g), and also the one of the corrosion product – the gypsum. To do these
computations we use the reference parameters reported in [5].
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Figure 1: Illustration of concentration profiles for the macroscopic concentration of gaseous H2S (left)
and of gypsum (right). Graphs plotted at times t ∈ {0,80,160,240,320,400} in a left-to-right and top-to-
bottom order.

Figure 1 shows the evolution of u1(x, t) and u4(x, t) as time elapses. Interestingly, although the behav-
ior of u1 is as expected (i.e., purely diffusive), we notice that a macroscopic gypsum layer (region where
u4 is produced) is formed (after a transient time t∗ > 80) and grows in time. The figure clearly indicates
that there are two distinct regions separated by a slowly moving intermediate layer: the left region – the
place where the gypsum production reached saturation (a threshold), and the right region – the place of
the ongoing sulfatation reaction (1d) (the gypsum production has not yet reached here the natural thresh-
old). The precise position of the separating layer is a priori unknown. To capture it simultaneously with
the computation of the concentration profile would require a moving-boundary formulation similar to the
one reported in [4].
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