573 research outputs found

    Inelastic light scattering and the excited states of many-electron quantum dots

    Full text link
    A consistent calculation of resonant inelastic (Raman) scattering amplitudes for relatively large quantum dots, which takes account of valence-band mixing, discrete character of the spectrum in intermediate and final states, and interference effects, is presented. Raman peaks in charge and spin channels are compared with multipole strengths and with the density of energy levels in final states. A qualitative comparison with the available experimental results is given.Comment: 5 pages, accepted in J. Phys.: Condens. Matte

    Raman scattering in a two-dimensional electron gas: Boltzmann equation approach

    Get PDF
    The inelastic light scattering in a 2-d electron gas is studied theoretically using the Boltzmann equation techniques. Electron-hole excitations produce the Raman spectrum essentially different from the one predicted for the 3-d case. In the clean limit it has the form of a strong non-symmetric resonance due to the square root singularity at the electron-hole frequency ω=vk\omega = vk while in the opposite dirty limit the usual Lorentzian shape of the cross section is reestablished. The effects of electromagnetic field are considered self-consistently and the contribution from collective plasmon modes is found. It is shown that unlike 3-d metals where plasmon excitations are unobservable (because of very large required transfered frequencies), the two-dimensional electron system gives rise to a low-frequency (ωk1/2\omega \propto k^{1/2}) plasmon peak. A measurement of the width of this peak can provide data on the magnitude of the electron scattering rate.Comment: 4 pages, 3 figures. to appear in Phys. Rev. B 59 (1999

    Semiquantitative theory of electronic Raman scattering from medium-size quantum dots

    Full text link
    A consistent semiquantitative theoretical analysis of electronic Raman scattering from many-electron quantum dots under resonance excitation conditions has been performed. The theory is based on random-phase-approximation-like wave functions, with the Coulomb interactions treated exactly, and hole valence-band mixing accounted for within the Kohn-Luttinger Hamiltonian framework. The widths of intermediate and final states in the scattering process, although treated phenomenologically, play a significant role in the calculations, particularly for well above band gap excitation. The calculated polarized and unpolarized Raman spectra reveal a great complexity of features and details when the incident light energy is swept from below, through, and above the quantum dot band gap. Incoming and outgoing resonances dramatically modify the Raman intensities of the single particle, charge density, and spin density excitations. The theoretical results are presented in detail and discussed with regard to experimental observations.Comment: Submitted to Phys. Rev.

    Smart subtitles for vocabulary learning

    Get PDF
    Language learners often use subtitled videos to help them learn. However, standard subtitles are geared more towards comprehension than vocabulary learning, as translations are nonliteral and are provided only for phrases, not vocabulary. This paper presents Smart Subtitles, which are interactive subtitles tailored towards vocabulary learning. Smart Subtitles can be automatically generated from common video sources such as subtitled DVDs. They provide features such as vocabulary definitions on hover, and dialog-based video navigation. In our pilot study with intermediate learners studying Chinese, participants correctly defined over twice as many new words in a post-viewing vocabulary test when they used Smart Subtitles, compared to dual Chinese-English subtitles. Learners spent the same amount of time watching clips with each tool, and enjoyed viewing videos with Smart Subtitles as much as with dual subtitles. Learners understood videos equally well using either tool, as indicated by self-assessments and independent evaluations of their summaries

    First-Principles Dynamical Coherent-Potential Approximation Approach to the Ferromagnetism of Fe, Co, and Ni

    Full text link
    Magnetic properties of Fe, Co, and Ni at finite temperatures have been investigated on the basis of the first-principles dynamical CPA (Coherent Potential Approximation) combined with the LDA (Local Density Approximation) + UU Hamiltonian in the Tight-Binding Linear Muffintin Orbital (TB-LMTO) representation. The Hamiltonian includes the transverse spin fluctuation terms. Numerical calculations have been performed within the harmonic approximation with 4th-order dynamical corrections. Calculated single-particle densities of states in the ferromagnetic state indicate that the dynamical effects reduce the exchange splitting, suppress the band width of the quasi-particle state, and causes incoherent excitations corresponding the 6 eV satellites. Results of the magnetization vs temperature curves, paramagnetic spin susceptibilities, and the amplitudes of local moments are presented. Calculated Curie temperatures (TCT_{\rm C}) are reported to be 1930K for Fe, 2550K for Co, and 620K for Ni; TCT_{\rm C} for Fe and Co are overestimated by a factor of 1.8, while TCT_{\rm C} in Ni agrees with the experimental result. Effective Bohr magneton numbers calculated from the inverse susceptibilities are 3.0 μB\mu_{\rm B} (Fe), 3.0 μB\mu_{\rm B} (Co), and 1.6 μB\mu_{\rm B} (Ni), being in agreement with the experimental ones. Overestimate of TCT_{\rm C} in Fe and Co is attributed to the neglects of the higher-order dynamical effects as well as the magnetic short range order.Comment: 10 pages, 13 figure

    Quasiparticle dynamics in ferromagnetic compounds of the Co-Fe and Ni-Fe systems

    Get PDF
    We report a theoretical study of the quasiparticle lifetime and the quasiparticle mean free path caused by inelastic electron-electron scattering in ferromagnetic compounds of the Co-Fe and Ni-Fe systems. The study is based on spin-polarized calculations, which are performed within the GWGW approximation for equiatomic and Co- and Ni-rich compounds, as well as for their constituents. We mainly focus on the spin asymmetry of the quasiparticle properties, which leads to the spin-filtering effect experimentally observed in spin-dependent transport of hot electrons and holes in the systems under study. By comparing with available experimental data on the attenuation length, we estimate the contribution of the inelastic mean free path to the latter.Comment: 10 pages, 10 figure

    Особливості формування самостійної пізнавальної діяльності майбутніх учителів математики

    Get PDF
    (uk) У статті зроблено спробу розкрити особливості самостійної пізнавальної діяльності майбутніх вчителів; досліджуються різні підходи до цього поняття; розкриваються такі його складові, як самостійність, пізнавальна самостійність, пізнавальна діяльність.(ru) В статье сделана попытка раскрыть особенности самостоятельной познавательной деятельности будущих учителей; исследуются различные подходы к этому понятию; раскрываются такие его составляющие, как самостоятельность, познавательная самостоятельность, познавательная деятельность

    QTLs for oil yield components in an elite oil palm (Elaeis guineensis) cross

    Get PDF
    Increased modern farming of superior types of the oil palm, Elaeis guineensis Jacq., which has naturally efficient oil biosynthesis, has made it the world’s foremost edible oil crop. Breeding improvement is, however, circumscribed by time and costs associated with the tree’s long reproductive cycle, large size and 10–15 years of field testing. Marker-assisted breeding has considerable potential for improving this crop. Towards this, quantitative trait loci (QTL) linked to oil yield component traits were mapped in a high-yield population. In total, 164 QTLs associated with 21 oil yield component traits were discovered, with cumulative QTL effects increasing in tandem with the number of QTL markers and matching the QT+ alleles for each trait. The QTLs confirmed all traits to be polygenic, with many genes of individual small effects on independent loci, but epistatic interactions are not ruled out. Furthermore, several QTLs maybe pleiotropic as suggested by QTL clustering of inter-related traits on almost all linkage groups. Certain regions of the chromosomes seem richer in the genes affecting a particular yield component trait and likely encompass pleiotropic, epistatic and heterotic effects. A large proportion of the identified additive effects from QTLs may actually arise from genic interactions between loci. Comparisons with previous mapping studies show that most of the QTLs were for similar traits and shared similar marker intervals on the same linkage groups. Practical applications for such QTLs in marker-assisted breeding will require seeking them out in different genetic backgrounds and environments
    corecore