437 research outputs found
Magnetic frustration and spontaneous rotational symmetry breaking in PdCrO2
In the triangular layered magnet PdCrO2 the intralayer magnetic interactions
are strong, however the lattice structure frustrates interlayer interactions.
In spite of this, long-range, 120 antiferromagnetic order condenses at
~K. We show here through neutron scattering measurements under
in-plane uniaxial stress and in-plane magnetic field that this occurs through a
spontaneous lifting of the three-fold rotational symmetry of the nonmagnetic
lattice, which relieves the interlayer frustration. We also show through
resistivity measurements that uniaxial stress can suppress thermal magnetic
disorder within the antiferromagnetic phase.Comment: 9 pages, 9 figure
Effects of Electroweak Instantons In High-Energy Neutrino Telescopes
We demonstrate that next generation high-energy neutrino telescopes may
reveal the existence of interactions induced by standard model electroweak
instantons. The energy spectrum, the angular distribution, and the quark and
lepton multiplicity of events in the detector each provide signatures which can
indicate the presence of these interactions. High-energy neutrino telescopes
may be capable of searching for signals at energies far beyond the reach of the
next generation colliders.Comment: Version to appear in PL
Manipulating ultracold atoms with a reconfigurable nanomagnetic system of domain walls
The divide between the realms of atomic-scale quantum particles and
lithographically-defined nanostructures is rapidly being bridged. Hybrid
quantum systems comprising ultracold gas-phase atoms and substrate-bound
devices already offer exciting prospects for quantum sensors, quantum
information and quantum control. Ideally, such devices should be scalable,
versatile and support quantum interactions with long coherence times.
Fulfilling these criteria is extremely challenging as it demands a stable and
tractable interface between two disparate regimes. Here we demonstrate an
architecture for atomic control based on domain walls (DWs) in planar magnetic
nanowires that provides a tunable atomic interaction, manifested experimentally
as the reflection of ultracold atoms from a nanowire array. We exploit the
magnetic reconfigurability of the nanowires to quickly and remotely tune the
interaction with high reliability. This proof-of-principle study shows the
practicability of more elaborate atom chips based on magnetic nanowires being
used to perform atom optics on the nanometre scale.Comment: 4 pages, 4 figure
Lightweight Techniques for Private Heavy Hitters
This paper presents a new protocol for solving the private heavy-hitters
problem. In this problem, there are many clients and a small set of
data-collection servers. Each client holds a private bitstring. The servers
want to recover the set of all popular strings, without learning anything else
about any client's string. A web-browser vendor, for instance, can use our
protocol to figure out which homepages are popular, without learning any user's
homepage. We also consider the simpler private subset-histogram problem, in
which the servers want to count how many clients hold strings in a particular
set without revealing this set to the clients.
Our protocols use two data-collection servers and, in a protocol run, each
client send sends only a single message to the servers. Our protocols protect
client privacy against arbitrary misbehavior by one of the servers and our
approach requires no public-key cryptography (except for secure channels), nor
general-purpose multiparty computation. Instead, we rely on incremental
distributed point functions, a new cryptographic tool that allows a client to
succinctly secret-share the labels on the nodes of an exponentially large
binary tree, provided that the tree has a single non-zero path. Along the way,
we develop new general tools for providing malicious security in applications
of distributed point functions.
In an experimental evaluation with two servers on opposite sides of the U.S.,
the servers can find the 200 most popular strings among a set of 400,000
client-held 256-bit strings in 54 minutes. Our protocols are highly
parallelizable. We estimate that with 20 physical machines per logical server,
our protocols could compute heavy hitters over ten million clients in just over
one hour of computation.Comment: To appear in IEEE Security & Privacy 202
- …
