117 research outputs found

    The NM23-H1/H2 homolog NDK-1 is required for full activation of Ras signaling in C. elegans

    Get PDF
    The group I members of the Nm23 (non-metastatic) gene family encode nucleoside diphosphate kinases (NDPKs) that have been implicated in the regulation of cell migration, proliferation and differentiation. Despite their developmental and medical significance, the molecular functions of these NDPKs remain ill defined. To minimize confounding effects of functional compensation between closely related Nm23 family members, we studied ndk-1, the sole Caenorhabditis elegans ortholog of group I NDPKs, and focused on its role in Ras/mitogen-activated protein kinase (MAPK)-mediated signaling events during development. ndk-1 inactivation leads to a protruding vulva phenotype and affects vulval cell fate specification through the Ras/MAPK cascade. ndk-1 mutant worms show severe reduction of activated, diphosphorylated MAPK in somatic tissues, indicative of compromised Ras/MAPK signaling. A genetic epistasis analysis using the vulval induction system revealed that NDK-1 acts downstream of LIN-45/Raf, but upstream of MPK-1/MAPK, at the level of the kinase suppressors of ras (KSR-1/2). KSR proteins act as scaffolds facilitating Ras signaling events by tethering signaling components, and we suggest that NDK-1 modulates KSR activity through direct physical interaction. Our study reveals that C. elegans NDK-1/Nm23 influences differentiation by enhancing the level of Ras/MAPK signaling. These results might help to better understand how dysregulated Nm23 in humans contributes to tumorigenesis. Ā© 2013. Published by The Company of Biologists Ltd

    Hypoxia-inducible factor-2Ī± regulates the expression of TRAIL receptor DR5 in renal cancer cells

    Get PDF
    To understand the role of hypoxia-inducible factor (HIF)-2Ī± in regulating sensitivity of renal cancer cells to tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis, we transfected wild-type and mutant von Hippel Lindau (VHL) proteins into TRAIL-sensitive, VHL-negative A498 cells. We find that wild-type VHL, but not the VHL mutants S65W and C162F that do not degrade HIF proteins, cause TRAIL resistance. Knock down of the HIF-2Ī± protein by RNA interference (short hairpin RNA) blocked TRAIL-induced apoptosis, decreased the level of TRAIL receptor (DR5) protein and inhibited the transcription of DR5 messenger RNA. By using luciferase constructs containing the upstream region of the DR5 promoter, we demonstrate that HIF-2Ī± stimulates the transcription of the DR5 gene by activating the upstream region between āˆ’448 and āˆ’1188. Because HIF-2Ī± is thought to exert its effect on gene transcription by interacting with the Max protein partner of Myc in the Myc/Max dimer, small interfering RNAs to Myc were used to lower the levels of this protein. In multiple renal cancer cell lines decreasing the levels of Myc blocked the ability of HIF-2Ī± to stimulate DR5 transcription. PS-341 (VELCADE, bortezomib), a proteasome inhibitor used to treat human cancer, increases the levels of both HIF-2Ī± and c-Myc and elevates the level of DR5 in renal cancer, sensitizing renal cancer cells to TRAIL therapy. Similarly, increasing HIF-2Ī± in prostate and lung cancer cell lines increased the levels of DR5. Thus, in renal cancer cell lines expressing HIF-2Ī±, this protein plays a role in regulating the levels of the TRAIL receptor DR5

    The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol

    Get PDF
    Peroxisomal targeting signals (PTSs) are recognized by predominantly cytosolic receptors, Pex5p and Pex7p. The fate of these PTS receptors following their interactions on the peroxisomal membrane with components of docking and putative translocation complexes is unknown. Using both novel and multiple experimental approaches, we show that human Pex5p does not just bind cargo and deliver it to the peroxi-some membrane, but participates in multiple rounds of entry into the peroxisome matrix and export to the cytosol independent of the PTS2 import pathway. This unusual shuttling mechanism for the PTS1 receptor distinguishes protein import into peroxisomes from that into most other organelles, with the exception of the nucleus

    Endothelial Function of von Hippel-Lindau

    No full text

    Drosophila awd, the homolog of human nm23, regulates FGF receptor levels and functions synergistically with shi/dynamin during tracheal development

    No full text
    Human nm23 has been implicated in suppression of metastasis in various cancers, but the underlying mechanism of such activity has not been fully understood. Using Drosophila tracheal system as a genetic model, we examined the function of the Drosophila homolog of nm23, the awd gene, in cell migration. We show that loss of Drosophila awd results in dysregulated tracheal cell motility. This phenotype can be suppressed by reducing the dosage of the chemotactic FGF receptor (FGFR) homolog, breathless (btl), indicating that btl and awd are functionally antagonists. In addition, mutants of shi/dynamin show similar tracheal phenotypes as in awd and exacerbate those in awd mutant, suggesting defects in vesicle-mediated turnover of FGFR in the awd mutant. Consistent with this, Btl-GFP chimera expressed from a cognate btl promoter-driven system accumulate at high levels on tracheal cell membrane of awd mutants as well as in awd RNA duplex-treated cultured cells. Thus, we propose that awd regulates tracheal cell motility by modulating the FGFR levels, through a dynamin-mediated pathway

    awd, the Homolog of Metastasis Suppressor Gene Nm23, Regulates Drosophila Epithelial Cell Invasionā–æ ā€ 

    No full text
    Border cell migration during Drosophila melanogaster oogenesis is a highly pliable model for studying epithelial to mesenchymal transition and directional cell migration. The process involves delamination of a group of 6 to 10 follicle cells from the epithelium followed by guided migration and invasion through the nurse cell complex toward the oocyte. The guidance cue is mainly provided by the homolog of platelet-derived growth factor/vascular endothelial growth factor family of growth factor, or Pvf, emanating from the oocyte, although Drosophila epidermal growth factor receptor signaling also plays an auxiliary role. Earlier studies implicated a stringent control of the strength of Pvf-mediated signaling since both down-regulation of Pvf and overexpression of active Pvf receptor (Pvr) resulted in stalled border cell migration. Here we show that the metastasis suppressor gene homolog Nm23/awd is a negative regulator of border cell migration. Its down-regulation allows for optimal spatial signaling from two crucial pathways, Pvr and JAK/STAT. Its overexpression in the border cells results in stalled migration and can revert the phenotype of overexpressing constitutive Pvr or dominant-negative dynamin. This is a rare example demonstrating the relevance of a metastasis suppressor gene function utilized in a developmental process involving cell invasion

    Drosophila von Hippel-Lindau Tumor Suppressor Gene Function in Epithelial Tubule Morphogenesis ā–æ

    No full text
    Mutations in the human von Hippel-Lindau (VHL) gene are the cause of VHL disease that displays multiple benign and malignant tumors. The VHL gene has been shown to regulate angiogenic potential and glycolic metabolism via its E3 ubiquitin ligase function against the alpha subunit of hypoxia-inducible factor (HIF-Ī±). However, many HIF-independent functions of VHL have been identified. Recent evidence also indicates that the canonical function cannot fully explain the VHL mutant cell phenotypes, although it is still unclear how many of these noncanonical functions relate to the pathophysiological processes because of a lack of tractable genetic systems. Here, we report the first genomic mutant phenotype of Drosophila melanogaster VHL (dVHL) in the epithelial tubule network, the trachea, and show that dVHL regulates branch migration and lumen formation via its endocytic function. The endocytic function regulates the surface level of the chemotactic signaling receptor Breathless and promotes clearing of the lumen matrix during maturation of the tracheal tubes. Importantly, the regulatory function in tubular morphogenesis is conserved in the mammalian system, as conditional knockout of Vhl in mouse kidney also resulted in similar cell motility and lumen phenotypes
    • ā€¦
    corecore