480 research outputs found

    Ordering Policy Rules with an Unconditional Welfare Measure

    Get PDF
    The unconditional expectation of social welfare is often used to assess alternative macroeconomic policy rules in applied quantitative research. This paper provides a detailed analysis of such policies. It sets out the unconditionally optimal (UO) policy problem and derives a linear-quadratic (LQ) version of that problem that approximates the exact non-linear problem. The properties of UO policies are analyzed through a series of examples and contrasted with the timeless perspective (TP), exposited in Benigno and Woodford (2012). Some substantive implications for optimal monetary policy are explored

    Piezoelectric nonlinearity and frequency dispersion of the direct piezoelectric response of BiFeO3 ceramics

    Get PDF
    We report on the frequency and stress dependence of the direct piezoelectric d33 coefficient in BiFeO3 ceramics. The measurements reveal considerable piezoelectric nonlinearity, i.e., dependence of d33 on the amplitude of the dynamic stress. The nonlinear response suggests a large irreversible contribution of non-180{\deg} domain walls to the piezoelectric response of the ferrite, which, at present measurement conditions, reached a maximum of 38% of the total measured d33. In agreement with this interpretation, both types of non-180{\deg} domain walls, characteristic for the rhombohedral BiFeO3, i.e., 71{\deg} and 109{\deg}, were identified in the poled ceramics using transmission electron microscopy (TEM). In support to the link between nonlinearity and non-180{\deg} domain wall contribution, we found a correlation between nonlinearity and processes leading to deppining of domain walls from defects, such as quenching from above the Curie temperature and high-temperature sintering. In addition, the nonlinear piezoelectric response of BiFeO3 showed a frequency dependence that is qualitatively different from that measured in other nonlinear ferroelectric ceramics, such as "soft" (donor-doped) Pb(Zr,Ti)O3 (PZT); possible origins of this dispersion are discussed. Finally, we show that, once released from pinning centers, the domain walls can contribute extensively to the electromechanical response of BiFeO3; in fact, the extrinsic domain-wall contribution is relatively as large as in Pb-based ferroelectric ceramics with morphotropic phase boundary (MPB) composition, such as PZT. This finding might be important in the search of new lead-free MPB compositions based on BiFeO3 as it suggests that such compositions might also exhibit large extrinsic domain-wall contribution to the piezoelectric response.Comment: 38 pages, 11 figure

    Laboratory tests of beam loss monitor detectors for SIS 100

    Get PDF

    Landau thermodynamic potential for BaTiO_3

    Full text link
    In the paper, the description of the dielectric and ferroelectric properties of BaTiO_3 single crystals using Landau thermodynamic potential is addressed. Our results suggest that when using the sixth-power free energy expansion of the thermodynamic potential, remarkably different values of the fourth-power coefficient, \beta (the coefficient of P^4_i terms), are required to adequately reproduce the nonlinear dielectric behavior of the paraelectric phase and the electric field induced ferroelectric phase, respectively. In contrast, the eighth-power expansion with a common set of coefficients enables a good description for both phases at the same time. These features, together with the data available in literature, strongly attest to the necessity of the eighth-power terms in Landau thermodynamic potential of BaTiO_3. In addition, the fourth-power coefficients, \beta and \xi (the coefficient of P^2_i P^2_j terms), were evaluated from the nonlinear dielectric responses along [001], [011], and [111] orientations in the paraelectric phase. Appreciable temperature dependence was evidenced for both coefficients above T_C. Further analysis on the linear dielectric response of the single domain crystal in the tetragonal phase demonstrated that temperature dependent anharmonic coefficients are also necessary for an adequate description of the dielectric behavior in the ferroelectric phase. As a consequence, an eighth-power thermodynamic potential, with some of the anharmonic coefficients being temperature dependent, was proposed and compared with the existing potentials. In general, the potential proposed in this work exhibits a higher quality in reproducing the dielectric and ferroelectric properties of this prototypic ferroelectric substance.Comment: 7 figures, 5 table

    Using Touch Technology to Foster Storytelling in the Preschool Classroom

    Get PDF
    This practitioner research explores ways children engage in literacy learning through storytelling with the use of touch technology in a VPK (Voluntary Pre-Kindergarten) classroom. With access to diverse touch technology devices but no experience using these technologies, a VPK teacher explored strategies to use the resources to enhance literacy learning in the classroom with the support of a professional learning community (PLC). The PLC consisted of a master’s student, university faculty, school director, and a technology liaison. The implementation of this study took place over three weeks, and every week children created a different story. Collected data include photographs, student voice recordings, anecdotal notes, and a reflective journal. The three weeks of implementation data showed how touch technology provided a new modality of learning representation for young children in my classroom. The findings suggest that multiliteracies complemented traditional literacy, storytelling enhanced children’s communication, and touch technology functionality went beyond literacy skills

    Anharmonicity of BaTiO_3 single crystals

    Full text link
    By analyzing the dielectric non-linearity with the Landau thermodynamic expansion, we find a simple and direct way to assess the importance of the eighth order term. Following this approach, it is demonstrated that the eighth order term is essential for the adequate description of the para/ferroelectric phase transition of BaTiO_3. The temperature dependence of the quartic coefficient \beta is accordingly reconsidered and is strongly evidenced by the change of its sign above 165 C. All these findings attest to the strong polarization anharmonicity of this material, which is unexpected for classical displacive ferroelectrics.Comment: 4 figures, to be published in Phys. Rev.

    Tailoring the interfacial interactions in ferroelectric fluorinated polymer/ceramic nanocomposites

    Get PDF
    In this work composites of PVDF-TrFE containing 60 vol% untreated and surface modified BaTiO3 were produced by solvent casting with two procedures. Their morphology and structure were characterized by scanning electron microscope, X-ray diffraction and differential scanning calorimetry. The effect of the processing conditions and of the surface modification of BaTiO3 on the viscoelastic, dielectric and piezoelectric properties was investigated. The surface modification of BaTiO3 allowed obtaining composite films with low porosity and good filler dispersion, and hence higher storage modulus and lower loss tangent, in a wider processing window. Furthermore it reduced the dielectric losses at low frequency and modified the decay kinetic of the d33 piezoelectric coefficient with respect to composites made with untreated particles

    Theory and Phenomenology of Vector Mesons in Medium

    Get PDF
    Electromagnetic probes promise to be direct messengers of (spectral properties of) hot and dense matter formed in heavy-ion collisions, even at soft momentum transfers essential for characterizing possible phase transitions. We examine how far we have progressed toward this goal by highlighting recent developments, and trying to establish connections between lattice QCD, effective hadronic models and phenomenology of dilepton production.Comment: 8 pages latex incl. 12 ps/eps files; invited plenary talk at Quark Matter 2006 conference, Shanghai (China), Nov. 14-20, 200

    Piezoresponse Force Spectroscopy of Ferroelectric Materials

    Get PDF
    Piezoresponse Force Spectroscopy (PFS) has emerged as a powerful technique for probing highly localized switching behavior and the role of microstructure and defects on switching. The application of a dc bias to a scanning probe microscope tip in contact with a ferroelectric surface results in the nucleation and growth of a ferroelectric domain below the tip, resulting in changes in local electromechanical response. Resulting hysteresis loops contains information on local ferroelectric switching behavior. The signal in PFS is the convolution of the volume of the nascent domain and the probing volume of the tip. Here, we analyze the signal formation mechanism in PFS by deriving the main parameters of domain nucleation in a semi-infinite material and establishing the relationships between domain parameters and PFM signal using a linear Greens function theory. The effect of surface screening and finite Debye length on the switching behavior is established. In particular, we predict that the critical nucleus size in PFM is controlled by the surface screening mechanism and in the absence of screening, tip-induced switching is impossible. Future prospects of PFS to study domain nucleation in the vicinity of defects, local switching centers in ferroelectrics, and unusual polarization states in low-dimensional ferroelectrics are discussed.Comment: 74 pages, 18 figures, 3 appendices, sent to Phys. Rev.

    QCD in the nuclear medium and effects due to Cherenkov gluons

    Full text link
    The equations of in-medium gluodynamics are proposed. Their classical lowest order solution is explicitly shown for a color charge moving with constant speed. For nuclear permittivity larger than 1 it describes emission of Cherenkov gluons resembling results of classical electrodynamics. The values of the real and imaginary parts of the nuclear permittivity are obtained from the fits to experimental data on the double-humped structure around the away-side jet obtained at RHIC. The dispersion of the nuclear permittivity is predicted by comparing the RHIC, SPS and cosmic ray data. This is important for LHC experiments. Cherenkov gluons may be responsible for the asymmetry of dilepton mass spectra near rho-meson, observed in the SPS experiment with excess in the low-mass wing of the resonance. This feature is predicted to be common for all resonances. The "color rainbow" quantum effect might appear according to higher order terms of in-medium QCD if the nuclear permittivity depends on color.Comment: 29 p., 4 figs; for "Phys. Atom. Nucl." volume dedicated to 80th birthday of L.B. Okun; minor corrections on pp. 11 and 13 in v
    • 

    corecore