880 research outputs found
Uniaxial-stress induced phase transitions in [001]c-poled 0.955Pb(Zn1/3Nb2/3)O3-0.045PbTiO3
First-order, rhombohedral to orthorhombic, stress-induced phase transitions
have been evidenced by bulk charge-stress measurements and X-ray diffraction
derived lattice strain measurements in [001]c-poled PZN-4.5PT. The transitions
are induced by uniaxial, compressive loads applied either along or
perpendicular to the poling direction. In each case, they occur via rotation of
the polar vector in the Cm monoclinic plane and the induced lattice strain is
hysteretic yet reversible. Although no depoling is observed in the transverse
mode, net depolarization is observed under longitudinal stress which is
important for the use of [001]c-poled PZN-PT and PMN-PT single crystals in
Tonpilz-type underwater projectors.Comment: To be published in Applied Physics Letters, 16 pages, 3 figure
Direct Measurement of Piezoelectric Response around Ferroelectric Domain Walls in Crystals with Engineered Domain Configuration
We report the first investigation of the piezoelectric response on a
nanoscale in the poled ferroelectric crystals with engineered configuration of
domains. Piezoresponse force microscopy of tetragonal 0.63PMN-0.37PT
relaxor-based ferroelectric crystals reviled that the d33 piezoelectric
coefficient is significantly reduced within the distance of about 1 um from the
uncharged engineered domain wall. This finding is essential for understanding
the mechanisms of the giant piezoresponse in relaxor-based crystals and for
designing new piezoelectric materials
Piezoelectric anisotropy: Enhanced piezoelectric response along nonpolar directions in perovskite crystals
This paper discusses the mechanisms that can contribute to the enhanced longitudinal piezoelectric effect along nonpolar directions in perovskite crystals, such as BaTiO3, PbTiO3, KNbO3, Pb(Mg1/3Nb2/3)O3-PbTiO3 and Pb(Zn1/2Nb2/3)O3-PbTiO3. Piezoelectric anisotropy is discussed in relation to temperature induced phase transitions, compositional variation in solid solutions with morphotropic phase boundaries, applied electric fields, the domain wall structure and domain wall displacemen
Landau thermodynamic potential for BaTiO_3
In the paper, the description of the dielectric and ferroelectric properties
of BaTiO_3 single crystals using Landau thermodynamic potential is addressed.
Our results suggest that when using the sixth-power free energy expansion of
the thermodynamic potential, remarkably different values of the fourth-power
coefficient, \beta (the coefficient of P^4_i terms), are required to adequately
reproduce the nonlinear dielectric behavior of the paraelectric phase and the
electric field induced ferroelectric phase, respectively. In contrast, the
eighth-power expansion with a common set of coefficients enables a good
description for both phases at the same time. These features, together with the
data available in literature, strongly attest to the necessity of the
eighth-power terms in Landau thermodynamic potential of BaTiO_3. In addition,
the fourth-power coefficients, \beta and \xi (the coefficient of P^2_i P^2_j
terms), were evaluated from the nonlinear dielectric responses along [001],
[011], and [111] orientations in the paraelectric phase. Appreciable
temperature dependence was evidenced for both coefficients above T_C. Further
analysis on the linear dielectric response of the single domain crystal in the
tetragonal phase demonstrated that temperature dependent anharmonic
coefficients are also necessary for an adequate description of the dielectric
behavior in the ferroelectric phase. As a consequence, an eighth-power
thermodynamic potential, with some of the anharmonic coefficients being
temperature dependent, was proposed and compared with the existing potentials.
In general, the potential proposed in this work exhibits a higher quality in
reproducing the dielectric and ferroelectric properties of this prototypic
ferroelectric substance.Comment: 7 figures, 5 table
Theory and Phenomenology of Vector Mesons in Medium
Electromagnetic probes promise to be direct messengers of (spectral
properties of) hot and dense matter formed in heavy-ion collisions, even at
soft momentum transfers essential for characterizing possible phase
transitions. We examine how far we have progressed toward this goal by
highlighting recent developments, and trying to establish connections between
lattice QCD, effective hadronic models and phenomenology of dilepton
production.Comment: 8 pages latex incl. 12 ps/eps files; invited plenary talk at Quark
Matter 2006 conference, Shanghai (China), Nov. 14-20, 200
Low field hysteresis in disordered ferromagnets
We analyze low field hysteresis close to the demagnetized state in disordered
ferromagnets using the zero temperature random-field Ising model. We solve the
demagnetization process exactly in one dimension and derive the Rayleigh law of
hysteresis. The initial susceptibility a and the hysteretic coefficient b
display a peak as a function of the disorder width. This behavior is confirmed
by numerical simulations d=2,3 showing that in limit of weak disorder
demagnetization is not possible and the Rayleigh law is not defined. These
results are in agreement with experimental observations on nanocrystalline
magnetic materials.Comment: Extended version, 18 pages, 5 figures, to appear in Phys. Rev.
Preparation and Characterization of (K0.5, Na0.5)NbO3 Ceramics
In this paper the preparation and characterization of the ceramic material (K0.5Na0.5)NbO3 (KNN) has been studied. Although conventional processing of KNN is often reported to result in sintered bodies lacking sufficient density, samples produced in this work exhibit theoretical density over 95% and yield superior piezoelectric properties than those obtained by the same method and reported previously. The electromechanical coupling coefficient in the thickness direction, kt, is found to reach 45%. Apart from kt, the piezoelectric coefficients in longitudinal and planar directions (d33 of 100pC/N and d31 of 43pC/N), hysteresis loop, pyroelectric coefficient measurements and dielectric properties are presented
A traveling wave Zeeman decelerator
We developed a new-concept Zeeman decelerator which produces a traveling magnetic trap. Atoms and molecules possessing a magnetic dipole moment, in so-called low field seeking states, are trapped around a node of a propagating wave provided that the initial velocity of the wave matches a velocity populated in the supersonic beam. In addition, three dimensional confinement is achieved by controlling the radial orientation of the trap, which can be done fully independently from its longitudinal motion
Anharmonicity of BaTiO_3 single crystals
By analyzing the dielectric non-linearity with the Landau thermodynamic
expansion, we find a simple and direct way to assess the importance of the
eighth order term. Following this approach, it is demonstrated that the eighth
order term is essential for the adequate description of the para/ferroelectric
phase transition of BaTiO_3. The temperature dependence of the quartic
coefficient \beta is accordingly reconsidered and is strongly evidenced by the
change of its sign above 165 C. All these findings attest to the strong
polarization anharmonicity of this material, which is unexpected for classical
displacive ferroelectrics.Comment: 4 figures, to be published in Phys. Rev.
- …