18 research outputs found

    The Acute and Chronic Cognitive Effects of a Sage Extract: A Randomized, Placebo Controlled Study in Healthy Humans

    Get PDF
    The sage (Salvia) plant contains a host of terpenes and phenolics which interact with mechanisms pertinent to brain function and improve aspects of cognitive performance. However, previous studies in humans have looked at these phytochemicals in isolation and following acute consumption only. A preclinical in vivo study in rodents, however, has demonstrated improved cognitive outcomes following 2-week consumption of CogniviaTM, a proprietary extract of both Salvia officinalis polyphenols and Salvia lavandulaefolia terpenoids, suggesting that a combination of phytochemicals from sage might be more efficacious over a longer period of time. The current study investigated the impact of this sage combination on cognitive functions in humans with acute and chronic outcomes. Participants (n = 94, 25 M, 69 F, 30–60 years old) took part in this randomised, double-blind, placebo-controlled, parallel groups design where a comprehensive array of cognitions were assessed 120- and 240-min post-dose acutely and following 29-day supplementation with either 600 mg of the sage combination or placebo. A consistent, significant benefit of the sage combination was observed throughout working memory and accuracy task outcome measures (specifically on the Corsi Blocks, Numeric Working Memory, and Name to Face Recall tasks) both acutely (i.e., changes within day 1 and day 29) and chronically (i.e., changes between day 1 to day 29). These results fall slightly outside of those reported previously with single Salvia administration, and therefore, a follow-up study with the single and combined extracts is required to confirm how these effects differ within the same cohort

    Chronic supplementation with a mix of salvia officinalis and salvia lavandulaefolia improves morris water maze learning in normal adult C57Bl/6J mice

    Get PDF
    Background: Two different species of sage, Salvia officinalis and Salvia lavandulaefolia, have demonstrated activities in cognitive function during preclinical and clinical studies related to impaired health situations or single administration. Different memory processes have been described to be significantly and positively impacted. Objective: Our objective is to explore the potential of these Salvia, and their additional activities, in healthy situations, and during prolonged administration, on memory and subsequent mechanisms of action related to putative effects. Design: This mouse study has implicated four investigational arms dedicated to control, Salvia officinalis aqueous extract, Salvia lavandulaefolia-encapsulated essential oil and a mix thereof (Cognivia™) for 2 weeks of administration. Cognitive functions have been assessed throughout Y-maze and Morris water maze models. The impact of supplementation on lipid peroxidation, oxidative stress, neurogenesis, neuronal activity, neurotrophins, neurotrophin receptors, CaM kinase II and glucocorticoid receptors has been assessed via post-interventional tissue collection. Results: All Salvia groups had a significant effect on Y-maze markers on day 1 of administration. Only the mix of two Salvia species demonstrated significant improvements in Morris water maze markers at the end of administration. Considering all biological and histological markers, we did not observe any significant effect of S. officinalis, S. lavandulaefolia and a mix of Salvia supplementation on lipid peroxidation, oxidative stress and neuronal plasticity (neurogenesis, neuronal activity, neurotrophins). Interestingly, CaM kinase II protein expression is significantly increased in animals supplemented with Salvia. Conclusion: The activities of Salvia alone after one intake have been confirmed; however, a particular combination of different types of Salvia have been shown to improve memory and present specific synergistic effects after chronic administration in healthy mice

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Co-Supplementation of Baobab Fiber and Arabic Gum Synergistically Modulates the In Vitro Human Gut Microbiome Revealing Complementary and Promising Prebiotic Properties

    No full text
    Arabic gum, a high molecular weight heteropolysaccharide, is a promising prebiotic candidate as its fermentation occurs more distally in the colon, which is the region where most chronic colonic diseases originate. Baobab fiber could be complementary due to its relatively simple structure, facilitating breakdown in the proximal colon. Therefore, the current study aimed to gain insight into how the human gut microbiota was affected in response to long-term baobab fiber and Arabic gum supplementation when tested individually or as a combination of both, allowing the identification of potential complementary and/or synergetic effects. The validated Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), an in vitro gut model simulating the entire human gastrointestinal tract, was used. The microbial metabolic activity was examined, and quantitative 16S-targeted Illumina sequencing was used to monitor the gut microbial composition. Moreover, the effect on the gut microbial metabolome was quantitatively analyzed. Repeated administration of baobab fiber, Arabic gum, and their combination had a significant effect on the metabolic activity, diversity index, and community composition of the microbiome present in the simulated proximal and distal colon with specific impacts on Bifidobacteriaceae and Faecalibacterium prausnitzii. Despite the lower dosage strategy (2.5 g/day), co-supplementation of both compounds resulted in some specific synergistic prebiotic effects, including a biological activity throughout the entire colon, SCFA synthesis including a synergy on propionate, specifically increasing abundance of Akkermansiaceae and Christensenellaceae in the distal colon region, and enhancing levels of spermidine and other metabolites of interest (such as serotonin and ProBetaine)

    An Acute Dose of Specific Grape and Apple Polyphenols Improves Endurance Performance: A Randomized, Crossover, Double-Blind versus Placebo Controlled Study

    No full text
    Polyphenols are thought to be an interesting ergogenic aid for exercise and recovery. However, most studies regarding the effects of polyphenols investigated several days of supplementations. The present work aimed to study the effects of an acute intake of grape and apple polyphenols on the capacity to maintain intense exercise, here named endurance performance. Forty-eight physically active men (31 ± 6 years) were included in this study. During the two testing sessions, volunteers completed an endurance test at a high percentage of their maximal aerobic power and time to exhaustion was measured. Respiratory and pain parameters were also monitored. The preceding evening and 1 h before testing, volunteers had to absorb either 500 mg of polyphenols or placebo according to randomization. In comparison with the placebo, the mean duration of the maximal endurance test was significantly increased with polyphenols (+9.7% ± 6.0%, p &lt; 0.05). The maximal perceived exertion was reached later with polyphenols (+12.8% ± 6.8%, p &lt; 0.05). Practically, the present study showed the beneficial effects of grape and apple polyphenols for athletes looking for endurance performance improvements. The specifically designed profile of polyphenols appeared to enhance the capacity to maintain intensive efforts and delay perceived exertion

    Cell-Based Antioxidant Properties and Synergistic Effects of Natural Plant and Algal Extracts Pre and Post Intestinal Barrier Transport

    No full text
    In this work, both direct and indirect cell-based antioxidant profiles were established for 27 plant extracts and 1 algal extract. To evaluate the direct antioxidant effects, fluorescent AOP1 cell assay was utilized, which measures the ability of different samples to neutralize intracellular free radicals produced by a cell-based photo-induction process. As the intestinal barrier is the first cell line crossed by the product, dose response curves obtained from Caco-2 cells were used to establish EC50 values for 26 out of the 28 natural extracts. Among them, 11 extracts from Vitis, Hamamelis, Syzygium, Helichrysum, Ilex and Ribes genera showed remarkable EC50s in the range of 10 &micro;g/mL. In addition to this, a synergistic effect was found when combinations of the most potent extracts (S. aromaticum, H. italicum, H. virginiana, V. vinifera) were utilized compared to extracts alone. Indirect antioxidant activities (i.e., the ability of cells to trigger antioxidant defenses) were studied using the ARE/Nrf2 luminescence reporter-gene assay in HepG2 cells, as liver is the first organ crossed by an edible ingredient once it enters in the bloodstream. Twelve extracts were subjected to an intestinal epithelial barrier passage in order to partially mimic intestinal absorption and show whether basolateral compartments could maintain direct or indirect antioxidant properties. Using postepithelial barrier samples and HepG2 cells as a target model, we demonstrate that indirect antioxidant activities are maintained for three extracts, S. aromaticum, H. virginiana and H. italicum. Our experimental work also confirms the synergistic effects of combinations of post-intestinal barrier compartments issued from apical treatment with these three extracts. By combining cell-based assays together with an intestinal absorption process, this study demonstrates the power of cell systems to address the issue of antioxidant effects in humans

    Acute Effects of Salvia Supplementation on Cognitive Function in Athletes During a Fatiguing Cycling Exercise: A Randomized Cross-Over, Placebo-Controlled, and Double-Blind Study

    No full text
    International audienceSage and Cognition in Athletes Conclusion: The combination of Salvia improved the cognitive functions (perceived exertion, working memory, and reaction time). The positive effects were obtained in fresh condition and were maintained with fatigue

    Relationship between the molecular characteristics of Acacia gum and its functional properties

    No full text
    International audienceAcacia gum, known as gum Arabic (GA), is a hydrocolloid complex, polysaccharide-based gum exudate. The gum is secreted by the trunk, branches or fruit of Acacia trees (i.e Acacia senegal and Acacia seyal) in response to a scission, injury or fungal infection. Acacia trees are natives to dry areas of the sub-saharian region, from Senegal to East Africa, of which Sudan, Chad, and Nigeria produce nearly 95% of GA exported to the world market. The dried gummy exudate, consisting of soluble fibers of low viscosity, is an interesting edible ingredient for several industrial applications (Williams & Phillips, 2009). Thanks to its technological features, the GA is extensively used in the food, pharmaceutical, printing, textile, and cosmetic industries. Added to liquid food systems, they can adjust and improve their rheological properties. GA generally function as stabilizer, emulsifier, film former, thickener, flocculant and surfacefinishing agent. These intrinsic properties make GA a recognized food additive (E414). They are found in the production of beverages, confectionery, emulsions, flavor encapsulations, bakery products and brewing (Verbeken, Dierckx, & Dewettinck, 2003). These exceptional functional properties are thought to be tightly related to the composition and characteristics of molecular structure of GA. The molecular structure of GA consists of a mixture of highly branched and acidic polysaccharides. The main linear chain is composed of a core of 1,3linked β-D-galactopyranose monomers with branches linked through C-6 but also C-4 or C-2. The branched chains consist of galactose and arabinose terminated by rhamnose and glucuronic acid (Al-Assaf et al.
    corecore