95 research outputs found

    Context Effects in Embodied Lexical-Semantic Processing

    Get PDF
    The embodied view of language comprehension proposes that the meaning of words is grounded in perception and action rather than represented in abstract amodal symbols. Support for embodied theories of language processing comes from behavioral studies showing that understanding a sentence about an action can modulate congruent and incongruent physical responses, suggesting motor involvement during comprehension of sentences referring to bodily movement. Additionally, several neuroimaging studies have provided evidence that comprehending single words denoting manipulable objects elicits specific responses in the neural motor system. An interesting question that remains is whether action semantic knowledge is directly activated as motor simulations in the brain, or rather modulated by the semantic context in which action words are encountered. In the current paper we investigated the nature of conceptual representations using a go/no-go lexical decision task. Specifically, target words were either presented in a semantic context that emphasized dominant action features (features related to the functional use of an object) or non-dominant action features. The response latencies in a lexical decision task reveal that participants were faster to respond to words denoting objects for which the functional use was congruent with the prepared movement. This facilitation effect, however, was only apparent when the semantic context emphasized corresponding motor properties. These findings suggest that conceptual processing is a context-dependent process that incorporates motor-related knowledge in a flexible manner

    Familiarity Differentially Affects Right Hemisphere Contributions to Processing Metaphors and Literals

    Get PDF
    The role of the two hemispheres in processing metaphoric language is controversial. While some studies have reported a special role of the right hemisphere (RH) in processing metaphors, others indicate no difference in laterality relative to literal language. Some studies have found a role of the RH for novel/unfamiliar metaphors, but not conventional/familiar metaphors. It is not clear, however, whether the role of the RH is specific to metaphor novelty, or whether it reflects processing, reinterpretation or reanalysis of novel/unfamiliar language in general. Here we used functional magnetic resonance imaging (fMRI) to examine the effects of familiarity in both metaphoric and non-metaphoric sentences. A left lateralized network containing the middle and inferior frontal gyri, posterior temporal regions in the left hemisphere (LH), and inferior frontal regions in the RH, was engaged across both metaphoric and non-metaphoric sentences; engagement of this network decreased as familiarity decreased. No region was engaged selectively for greater metaphoric unfamiliarity. An analysis of laterality, however, showed that the contribution of the RH relative to that of LH does increase in a metaphor-specific manner as familiarity decreases. These results show that RH regions, taken by themselves, including commonly reported regions such as the right inferior frontal gyrus (IFG), are responsive to increased cognitive demands of processing unfamiliar stimuli, rather than being metaphor-selective. The division of labor between the two hemispheres, however, does shift towards the right for metaphoric processing. The shift results not because the RH contributes more to metaphoric processing. Rather, relative to its contribution for processing literals, the LH contributes less

    Differences in brain activity patterns during creative idea generation between eminent and non-eminent thinkers

    Get PDF
    An influential model of the neural mechanisms of creative thought suggests that creativity is manifested in the joint contributions of the Default Mode Network (DMN; a set of regions in the medial PFC, lateral and medial parietal cortex, and the medial temporal lobes) and the executive networks within the dorsolateral PFC. Several empirical reports have offered support for this model by showing that complex interactions between these brain systems account for individual differences in creative performance. The present study examined whether the engagement of these regions in idea generation is modulated by one\u27s eminence in a creativity-related field. Twenty (n = 20) healthy eminent creators from diverse fields of expertise and a \u27smart\u27 comparison group of sixteen (n = 16) age- and education-matched non-eminent thinkers were administered a creative generation task (an adaptation of the Alternative Uses Task) and a control perceptual task, while undergoing functional magnetic resonance imaging (fMRI). The participants\u27 verbal responses were recorded through a noise-canceling microphone and were later coded for fluency and accuracy. Behavioral and fMRI analyses revealed commonalities between groups, but also distinct patterns of activation in default mode and executive brain regions between the eminent and the non-eminent participants during creative thinking. We interpret these findings in the context of the well-documented contributions of these regions in the generation of creative ideas as modulated, in this study, by participants\u27 creative eminence

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Non-tidal ocean loading effects on geodetic GPS heights

    Get PDF
    GPS observations used in geophysical studies are not usually corrected for non-tidal ocean loading (NTOL) displacement. Here we investigate NTOL effects on 3–4 year GPS height time series from 17 sites around the southern North Sea, and compute the NTOL displacement according to two ocean models; the global ECCO model and a high resolution regional model, POLSSM, which covers the northwest European continental shelf. To assess the susceptibility of GPS height estimates to NTOL, reprocessed GIPSY PPP daily solutions are corrected for the resulting displacement, together with atmospheric pressure loading (ATML). We find that the displacements due to NTOL are comparable in size to ATML and the combined correction reduces the variance by 12–22 mm2 (20–30% reduction in RMS). We find that POLSSM outperforms ECCO, with around an 11% greater variance reduction, and hence high resolution models are recommended to correct GPS heights for NTO

    Context-dependent changes in functional connectivity of auditory cortices during the perception of object words

    Get PDF
    Contains fulltext : 102395.pdf (publisher's version ) (Open Access)Embodied theories hold that cognitive concepts are grounded in our sensorimotor systems. Specifically, a number of behavioral and neuroimaging studies have buttressed the idea that language concepts are represented in areas involved in perception and action [Pulvermueller, F. Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6, 576-582, 2005; Barsalou, L. W. Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577-660, 1999]. Proponents of a strong embodied account argue that activity in perception/action areas is triggered automatically upon encountering a word and reflect static semantic representations. In contrast to what would be expected if lexical semantic representations are automatically triggered upon encountering a word, a number of studies failed to find motor-related activity for words with a putative action-semantic component [Raposo, A., Moss, H. E., Stamatakis, E. A., & Tyler, L. K. Modulation of motor and premotor cortices by actions, action words and action sentences. Neuropsychologia, 47, 388-396, 2009; Rueschemeyer, S.-A., Brass, M., & Friederici, A. D. Comprehending prehending: Neural correlates of processing verbs with motor stems. Journal of Cognitive Neuroscience, 19, 855-865, 2007]. In a recent fMRI study, Van Dam and colleagues [Van Dam, W. O., Van Dijk, M., Bekkering, H., & Rueschemeyer, S.-A. Flexibility in embodied lexical-semantic representations. Human Brain Mapping, in press] showed that the degree to which a modality-specific region contributes to a representation considerably changes as a function of context. In the current study, we presented words for which both motor and visual properties (e.g., tennis ball, boxing glove) were important in constituting the concept. Our aim was to corroborate on earlier findings of flexible and context-dependent language representations by testing whether functional integration between auditory brain regions and perception/action areas is modulated by context. Functional connectivity was investigated by means of a psychophysiological interaction analysis, in which we found that bilateral superior temporal gyrus was more strongly connected with brain regions relevant for coding action information: (1) for Action Color words vs. Abstract words, and (2) for Action Color words presented in a context that emphasized action vs. a context that emphasized color properties.12 p
    corecore