1,828 research outputs found

    Radiation-induced nucleic acid synthesis in L cells under energy deprivation

    Get PDF
    Radiation induced nucleic acid synthesis in energy deprived L cell

    PIN12 INFANTILE GASTROENTERITIS IN THE COMMUNITY: A COST OF ILLNESS STUDY

    Get PDF

    Developing Intensity-Duration-Frequency (IDF) Curves From Satellite-Based Precipitation: Methodology and Evaluation

    Get PDF
    Given the continuous advancement in the retrieval of precipitation from satellites, it is important to develop methods that incorporate satellite-based precipitation data sets in the design and planning of infrastructure. This is because in many regions around the world, in situ rainfall observations are sparse and have insufficient record length. A handful of studies examined the use of satellite-based precipitation to develop intensity-duration-frequency (IDF) curves; however, they have mostly focused on small spatial domains and relied on combining satellite-based with ground-based precipitation data sets. In this study, we explore this issue by providing a methodological framework with the potential to be applied in ungauged regions. This framework is based on accounting for the characteristics of satellite-based precipitation products, namely, adjustment of bias and transformation of areal to point rainfall. The latter method is based on previous studies on the reverse transformation (point to areal) commonly used to obtain catchment-scale IDF curves. The paper proceeds by applying this framework to develop IDF curves over the contiguous United States (CONUS); the data set used is Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks – Climate Data Record (PERSIANN-CDR). IDFs are then evaluated against National Oceanic and Atmospheric Administration (NOAA) Atlas 14 to provide a quantitative estimate of their accuracy. Results show that median errors are in the range of (17–22%), (6–12%), and (3–8%) for one-day, two-day and three-day IDFs, respectively, and return periods in the range (2–100) years. Furthermore, a considerable percentage of satellite-based IDFs lie within the confidence interval of NOAA Atlas 14

    Well-nested Context Unification

    Get PDF
    International audienceContext unification (CU) is the famous open problem of solving context equations for trees. We distinguish a new decidable fragment of CU - well-nested CU - and present a new unification algorithm that solves well-nested context equations in non-deterministic polynomial time. We show that minimal well-nested solutions of context equations can be composed from the material present in the equation. This surprising property is highly wishful when modeling natural language ellipsis in CU

    Using macroecological species distribution models to estimate changes in the suitability of sites for threatened species reintroduction

    Get PDF
    1. Species reintroductions often aim to establish populations of threatened taxa over the long-term. However, climate change may jeopardize reintroduction efforts by altering the conditions of a recipient site beyond the tolerances of the focal species. To aid the selection of recipient sites that will retain their suitability under climate change, species distribution models (SDMs) have been proposed as a method of locating areas with a greater likelihood of facilitating species persistence. 2. We applied SDMs to predict macroclimatic suitability changes for 13 threatened plant and invertebrate species considered for reintroduction at four lowland raised bog sites undergoing restoration. We estimated suitability based on current and projected future conditions under two greenhouse gas concentration scenarios – one low (RCP2.6) and one high (RCP8.5) – using three general circulation models, for the period 2041–2060. 3. When considering current predicted suitability, our models indicated that nine species were viable candidates for reintroduction to at least one of the restoration sites. But when accounting for potential future changes in suitability, the number of candidates was reduced to seven species, based on the RCP8.5 climate change scenario. While three of the sites received consistently similar predictions of suitability across species and scenarios, the most northerly site, Red Moss, received divergent suitability predictions for some species. This site is predicted to remain suitable for Metrioptera brachyptera and Genista anglica under at least one scenario despite substantial losses forecast across the rest of their U.K. ranges, suggesting that it could act as a macroclimatic refuge as climate change advances. 4. The findings presented here made a valuable contribution to the reintroduction planning process, by facilitating the prioritization of reintroduction efforts towards species with a greater likelihood of establishing long-term populations at the prospective recipient sites

    Interplay of tidal and fluvial processes in an early Pleistocene, delta-fed, strait margin (Calabria, Southern Italy)

    Get PDF
    The architecture and morphodynamics of modern and ancient tidal straits and in particular the deposits of strait-margin zones, have been significantly understudied compared to other marginal marine settings, even though many reservoirs in the North Sea and the Norwegian Continental Shelf are developed in narrow grabens or seaways. This paper presents a detailed sedimentological and stratigraphic analysis of an early Pleistocene marginal-marine succession deposited along the northern margin of the Siderno paleostrait (southern Italy). This area represents an excellent case study of sedimentation along a tidal strait margin, interpreted to record the interaction of fluvial and tidal processes. Here, syn-depositional tectonics produced a complex coastal morphology, significantly influencing sedimentation and hydrodynamic processes. Along the strait margin, the emplacement of an isolated tectonic high (Piano Fossati) created a ca. 3.5 km-wide local passageway. This morpho-structural element induced interplays between fluvio-deltaic processes (fed from the northern strait margin) and tidal current reworking (active within the marine strait).The field-based facies analysis reported here documents an initial stage of non-tidal shallow-marine sedimentation across the strait. A subsequent regression caused river-generated hyperpycnal flows and the transfer of large volumes of pebbly and shelly sandstones into deeper water. Tidal currents became amplified in the strait, and, in the delta-front area, they were able to rework river-derived sediments generating large dune fields. Following the local tidal transport pathway, strong tidal currents skewed the delta front (causing it to be asymmetrical) and elongated sand bodies in a direction parallel to the marine strait axis. Differently from the classical tide-influenced deltas in which onshore-offshore tidal flow predominates, coast-parallel deflection and strong asymmetry of delta-front deposits is a typical feature of deltas entering tide-dominated seaways and straits, where strong tidal currents are capable of dispersing large volumes of sand for significant distances along the coast and along the strait axis. This process became progressively enhanced during the following transgression, when tide-modulated currents reworked biocalcarenitic sands over the previous delta deposits, generating southeasterly migrating dunes. At the end of the transgression, strandplain deposits formed in this area. This last stage of sedimentation was followed by a dramatic regional-scale structural uplift, which ended any marine circulation within the strait. This work provides new insights on sedimentation in a tide-dominated strait, and helps to predict sandbody distribution along the strait margin and axis. These findings can be applied to any other setting characterized by a narrow (possibly structurally-confined) basin dominated by tidal currents

    Developing interprofessional education online:An ecological systems theory analysis

    Get PDF
    This article relates the findings of a discourse analysis of an online asynchronous interprofessional learning initiative involving two UK universities. The impact of the initiative is traced over three intensive periods of online interaction, each of several-weeks duration occurring over a three-year period, through an analysis of a random sample of discussion forum threads. The corpus of rich data drawn from the forums is interpreted using ecological systems theory, which highlights the complexity of interaction of individual, social and cultural elements. Ecological systems theory adopts a life course approach to understand how development occurs through processes of progressively more complex reciprocal interaction between people and their environment. This lens provides a novel approach for analysis and interpretation of findings with respect to the impact of pre-registration interprofessional education and the interaction between the individual and their social and cultural contexts as they progress through 3/4 years of their programmes. Development is mapped over time (the chronosystem) to highlight the complexity of interaction across microsystems (individual), mesosystems (curriculum and institutional/care settings), exosystems (community/wider local context), and macrosystems (national context and culture). This article illustrates the intricacies of students’ interprofessional development over time and the interactive effects of social ecological components in terms of professional knowledge and understanding, wider appreciation of health and social care culture and identity work. The implications for contemporary pre-registration interprofessional education and the usefulness and applicability of ecological systems theory for future research and development are considered

    Seismic Structure, Gravity Anomalies and Flexure Along the Emperor Seamount Chain

    Get PDF
    The Hawaiian-Emperor seamount chain in the Pacific Ocean has provided fundamental insights into hotspot generated intraplate volcanism and the long-term strength of oceanic lithosphere. However, only a few seismic experiments to determine crustal and upper mantle structure have been carried out on the Hawaiian Ridge, and no deep imaging has ever been carried out along the Emperor seamounts. Here, we present the results of an active source seismic experiment using 29 Ocean-Bottom Seismometers (OBS) carried out along a strike profile of the seamounts in the region of Jimmu and Suiko guyots. Joint reflection and refraction tomographic inversion of the OBS data show the upper crust is highly heterogeneous with P wave velocities <4–5 km s−1, which are attributed to extrusive lavas and clastics. In contrast, the lower crust is remarkably homogeneous with velocities of 6.5–7.2 km s−1, which we attribute to oceanic crust and mafic intrusions. Moho is identified by a strong PmP arrival at offsets of 20–80 km, yielding depths of 13–16 km. The underlying mantle is generally homogeneous with velocities in the range 7.9–8.0 km s−1. The crust and mantle velocity structure has been verified by gravity modeling. While top of oceanic crust prior to volcano loading is not recognized as a seismic or gravity discontinuity, flexural modeling reveals a ∼5.0–5.5 km thick preexisting oceanic crust that is overlain by a ∼8 km thick volcanic edifice. Unlike at the Hawaiian Ridge, we find no evidence of magmatic underplating

    Anatomy of a mixed bioclastic–siliciclastic regressive tidal sand ridge: Facies-based case study from the lower Pleistocene Siderno Strait, southern Italy

    Get PDF
    Sand ridges, a common feature of modern open shelves, reflect persistent currents and sediment availability under recent transgressive conditions. They represent the largest bedforms in the oceans and, as such, can yield information on long-term oceanographic processes. However, there is a limited number of tidal sand ridges documented from the rock record, examples of regressive tidal sand ridges are scarce and studies describing ridges in straits are even more rare. This study analyses a Gelasian succession within a structurally controlled, tide-dominated strait in the Siderno Basin, southern Italy. The strait connected two wider basins, and accumulated sediments reworked by amplified tidal (bi-directional) currents. A series of tidal sand ridges with superimposed dunes developed close to the south-eastern end of the strait, where bathymetry was deeper and flow expansion occurred. One of the best-exposed tidal sand ridges, 65&nbsp;m thick, crops out along a ca 2&nbsp;km long cliff. Large-scale, ESE-prograding, seaward-offlapping shingles contain sets of bioclastic–siliciclastic, coarse-grained, cross-stratified sandstones, erosionally overlying upper Pliocene shelf marls and fine-grained sandstones. Cross-strata show angular, tangential and sigmoidal foresets with compound architectures and a SSE migration, i.e. oblique to the main growth direction. Fossil content indicates open-marine conditions. The succession changes abruptly across an erosion surface to non-tidal, highly burrowed mixed siliciclastic–bioclastic fine-grained sandstones, less than 15&nbsp;m thick. Documented features reflect stages of nucleation, active accretion and abandonment of an individual sand ridge, during a complete cycle of relative sea-level change. The ridge formed during a phase of normal regression, with accretion occurring during an initial highstand and the ensuing falling stage. During the lowstand the ridge was split into several minor bodies by enhanced tidal currents. The ensuing transgression draped the moribund ridge with tabular strata, whereas final highstand shelf sedimentation reworked the top of the underlying sand body with weak currents
    • …
    corecore