112 research outputs found

    Experimental observation of impossible-to-beat quantum advantage on a hybrid photonic system

    Full text link
    Quantum resources outperform classical ones for certain communication and computational tasks. Remarkably, in some cases, the quantum advantage cannot be improved using hypothetical postquantum resources. A class of tasks with this property can be singled out using graph theory. Here we report the experimental observation of an impossible-to-beat quantum advantage on a four-dimensional quantum system defined by the polarization and orbital angular momentum of a single photon. The results show pristine evidence of the quantum advantage and are compatible with the maximum advantage allowed using postquantum resources.Comment: REVTeX4, 5 pages, 2 figure

    Quantum discord and related measures of quantum correlations in XY chains

    Full text link
    We examine the quantum correlations of spin pairs in the ground state of finite XY chains in a transverse field, by evaluating the quantum discord as well as other related entropic measures of quantum correlations. A brief review of the latter, based on generalized entropic forms, is also included. It is shown that parity effects are of crucial importance for describing the behavior of these measures below the critical field. It is also shown that these measures reach full range in the immediate vicinity of the factorizing field, where they become independent of separation and coupling range. Analytical and numerical results for the quantum discord, the geometric discord and other measures in spin chains with nearest neighbor coupling and in fully connected spin arrays are also provided.Comment: accepted in Int. J. Mod. Phys. B, special issue "Classical Vs Quantum correlations in composite systems" edited by L. Amico, S. Bose, V. Korepin and V. Vedra

    Seasonality of trichinellosis in patients hospitalized in Belgrade, Serbia

    Get PDF
    A retrospective study of the course and outcome of trichinellosis in a series of 50 patients hospitalized at the Institute for Infectious and Tropical Diseases in Belgrade between 2001 and 2008 was performed. Clinical diagnosis of trichinellosis was based upon the patients' clinical history, symptoms and signs, and eosinophilia. The occurrence of cases showed a strong seasonality (P lt 0.00011. The incubation period ranged between one and 33 days. The mean time between onset of symptoms and admission was nine days. Family outbreaks were the most frequent. Smoked pork products were the dominant source of infection (76 %). Fever was the most frequent clinical manifestation (90 %), followed by myalgia (80 %) and periorbital edema (76 %). 43 patients were examined serologically and 72 % of them had anti-Trichinella antibodies. Eosinophilia and elevated levels of serum CK and LDH were detected in 94, 50 and 56 % of the patients, respectively. All patients responded favorably to treatment with mebendazole or albendazole, but eight developed transient complications. Trichinellosis remains a major public health issue in Serbia

    Geometric discord and Measurement-induced nonlocality for well known bound entangled states

    Full text link
    We employ geometric discord and measurement induced nonlocality to quantify non classical correlations of some well-known bipartite bound entangled states, namely the two families of Horodecki's (242\otimes 4, 333\otimes 3 and 444\otimes 4 dimensional) bound entangled states and that of Bennett etal's in 333\otimes 3 dimension. In most of the cases our results are analytic and both the measures attain relatively small value. The amount of quantumness in the 444\otimes 4 bound entangled state of Benatti etal and the 282\otimes 8 state having the same matrix representation (in computational basis) is same. Coincidently, the 2m2m2m\otimes 2m Werner and isotropic states also exhibit the same property, when seen as 22m22\otimes 2m^2 dimensional states.Comment: V2: Title changed, one more state added; 11 pages (single column), 2 figures, accepted in Quantum Information Processin

    Biorthogonal quantum mechanics

    Get PDF
    The Hermiticity condition in quantum mechanics required for the characterization of (a) physical observables and (b) generators of unitary motions can be relaxed into a wider class of operators whose eigenvalues are real and whose eigenstates are complete. In this case, the orthogonality of eigenstates is replaced by the notion of biorthogonality that defines the relation between the Hilbert space of states and its dual space. The resulting quantum theory, which might appropriately be called 'biorthogonal quantum mechanics', is developed here in some detail in the case for which the Hilbert-space dimensionality is finite. Specifically, characterizations of probability assignment rules, observable properties, pure and mixed states, spin particles, measurements, combined systems and entanglements, perturbations, and dynamical aspects of the theory are developed. The paper concludes with a brief discussion on infinite-dimensional systems. © 2014 IOP Publishing Ltd

    Local channels preserving maximal entanglement or Schmidt number

    Full text link
    Maximal entanglement and Schmidt number play an important role in various quantum information tasks. In this paper, it is shown that a local channel preserves maximal entanglement state(MES) or preserves pure states with Schmidt number rr(rr is a fixed integer) if and only if it is a local unitary operation.Comment: 10 page

    Critical Point Estimation and Long-Range Behavior in the One-Dimensional XY Model Using Thermal Quantum and Total Correlations

    Full text link
    We investigate the thermal quantum and total correlations in the anisotropic XY spin chain in transverse field. While we adopt concurrence and geometric quantum discord to measure quantum correlations, we use measurement-induced nonlocality and an alternative quantity defined in terms of Wigner-Yanase information to quantify total correlations. We show that the ability of these measures to estimate the critical point at finite temperature strongly depend on the anisotropy parameter of the Hamiltonian. We also identify a correlation measure which detects the factorized ground state in this model. Furthermore, we study the effect of temperature on long-range correlations.Comment: 7 pages, 6 figure

    Negativity and quantum discord in Davies environments

    Full text link
    We investigate the time evolution of negativity and quantum discord for a pair of non-interacting qubits with one being weakly coupled to a decohering Davies--type Markovian environment. At initial time of preparation, the qubits are prepared in one of the maximally entangled pure Bell states. In the limiting case of pure decoherence (i.e. pure dephasing), both, the quantum discord and negativity decay to zero in the long time limit. In presence of a manifest dissipative dynamics, the entanglement negativity undergoes a sudden death at finite time while the quantum discord relaxes continuously to zero with increasing time. We find that in dephasing environments the decay of the negativity is more propitious with increasing time; in contrast, the evolving decay of the quantum discord proceeds weaker for dissipative environments. Particularly, the slowest decay of the quantum discord emerges when the energy relaxation time matches the dephasing time.Comment: submitted for publicatio

    Logical independence and quantum randomness

    Full text link
    We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.Comment: 9 pages, 4 figures, published version plus additional experimental appendi

    Quantifying Quantum Correlations in Fermionic Systems using Witness Operators

    Full text link
    We present a method to quantify quantum correlations in arbitrary systems of indistinguishable fermions using witness operators. The method associates the problem of finding the optimal entan- glement witness of a state with a class of problems known as semidefinite programs (SDPs), which can be solved efficiently with arbitrary accuracy. Based on these optimal witnesses, we introduce a measure of quantum correlations which has an interpretation analogous to the Generalized Robust- ness of entanglement. We also extend the notion of quantum discord to the case of indistinguishable fermions, and propose a geometric quantifier, which is compared to our entanglement measure. Our numerical results show a remarkable equivalence between the proposed Generalized Robustness and the Schliemann concurrence, which are equal for pure states. For mixed states, the Schliemann con- currence presents itself as an upper bound for the Generalized Robustness. The quantum discord is also found to be an upper bound for the entanglement.Comment: 7 pages, 6 figures, Accepted for publication in Quantum Information Processin
    corecore