We propose a link between logical independence and quantum physics. We
demonstrate that quantum systems in the eigenstates of Pauli group operators
are capable of encoding mathematical axioms and show that Pauli group quantum
measurements are capable of revealing whether or not a given proposition is
logically dependent on the axiomatic system. Whenever a mathematical
proposition is logically independent of the axioms encoded in the measured
state, the measurement associated with the proposition gives random outcomes.
This allows for an experimental test of logical independence. Conversely, it
also allows for an explanation of the probabilities of random outcomes observed
in Pauli group measurements from logical independence without invoking quantum
theory. The axiomatic systems we study can be completed and are therefore not
subject to Goedel's incompleteness theorem.Comment: 9 pages, 4 figures, published version plus additional experimental
appendi