56 research outputs found

    The evolution of ependymin-related proteins

    Get PDF
    This research was funded by Australian Research Council grants to BMD and SFC (DP130102543). IMLS gratefully acknowledges start-up funding for her lab from MASTS (Marine Alliance for Science and Technology Scotland) and seedcorn funding through the Wellcome Trust ISSF3 grant number 204821/Z/16/Z.Background: Ependymins were originally defined as fish-specific secreted glycoproteins involved in central nervous system plasticity and memory formation. Subsequent research revealed that these proteins represent a fish-specific lineage of a larger ependymin-related protein family (EPDRs). EPDRs have now been identified in a number of bilaterian animals and have been implicated in diverse non-neural functions. The recent discoveries of putative EPDRs in unicellular holozoans and an expanded EPDR family with potential roles in conspecific communication in crown-of-thorns starfish suggest that the distribution and diversity of EPDRs is significantly broader than currently understood. Results :We undertook a systematic survey to determine the distribution and evolution of EPDRs in eukaryotes. In addition to Bilateria, EPDR genes were identified in Cnidaria, Placozoa, Porifera, Choanoflagellatea, Filasterea, Apusozoa, Amoebozoa, Charophyta and Percolozoa, and tentatively in Cercozoa and the orphan group Malawimonadidae. EPDRs appear to be absent from prokaryotes and many eukaryote groups including ecdysozoans, fungi, stramenopiles, alveolates, haptistans and cryptistans. The EPDR family can be divided into two major clades and has undergone lineage-specific expansions in a number of metazoan lineages, including in poriferans, molluscs and cephalochordates. Variation in a core set of conserved residues in EPDRs reveals the presence of three distinct protein types; however, 3D modelling predicts overall protein structures to be similar. Conclusions:  Our results reveal an early eukaryotic origin of the EPDR gene family and a dynamic pattern of gene duplication and gene loss in animals. This research provides a phylogenetic framework for the analysis of the functional evolution of this gene family.Publisher PDFPeer reviewe

    Asymmetric distribution of pl10 and bruno2, new members of a conserved core of early germline determinants in cephalochordates

    Get PDF
    Molecular fingerprinting of conserved germline and somatic "stemness" markers in different taxa have been key in defining the mechanism of germline specification ("preformation" or "epigenesis"), as well as expression domains of somatic progenitors. The distribution of molecular markers for primordial germ cells (PGCs), including vasa, nanos, and piwil1, as well as Vasa antibody staining, support a determinative mechanism of germline specification in the cephalochordate Branchiostoma lanceolatum, similarly to other amphioxus species. pl10 and bruno2, but not bruno4/6, are also expressed in a pattern consistent with these other germline genes, adding to our repertoire of PGC markers in lancelets. Expression of nanos, vasa, and the remaining markers (musashi, pufA, pufB, pumilio, and piwil2) may define populations of putative somatic progenitors in the tailbud, the amphioxus posterior growth zone, or zones of proliferative activity. Finally, we also identify a novel expression domain for musashi, a classic neural stem cell marker, during notochord development in amphioxus. These results are discussed in the context of germline determination in other taxa, stem cell regulation, and regenerative capacity in adult amphioxus

    THE ROLE OF INTERDEPENDENCE IN THE MICRO-FOUNDATIONS OF ORGANIZATION DESIGN: TASK, GOAL, AND KNOWLEDGE INTERDEPENDENCE

    Get PDF
    Interdependence is a core concept in organization design, yet one that has remained consistently understudied. Current notions of interdependence remain rooted in seminal works, produced at a time when managers’ near-perfect understanding of the task at hand drove the organization design process. In this context, task interdependence was rightly assumed to be exogenously determined by characteristics of the work and the technology. We no longer live in that world, yet our view of interdependence has remained exceedingly task-centric and our treatment of interdependence overly deterministic. As organizations face increasingly unpredictable workstreams and workers co-design the organization alongside managers, our field requires a more comprehensive toolbox that incorporates aspects of agent-based interdependence. In this paper, we synthesize research in organization design, organizational behavior, and other related literatures to examine three types of interdependence that characterize organizations’ workflows: task, goal, and knowledge interdependence. We offer clear definitions for each construct, analyze how each arises endogenously in the design process, explore their interrelations, and pose questions to guide future research

    Are Good Intentions Good Enough?: Informed Consent Without Trained Interpreters

    Get PDF
    OBJECTIVE: To examine the informed consent process when trained language interpreters are unavailable. BACKGROUND: Ensuring sufficient patient understanding for informed consent is especially challenging for patients with Limited English Proficiency (LEP). While US law requires provision of competent translation for LEP patients, such services are commonly unavailable. DESIGN AND PARTICIPANTS: Qualitative data was collected in 8 prenatal genetics clinics in Texas, including interviews and observations with 16 clinicians, and 30 Latina patients. Using content analysis techniques, we examined whether the basic criteria for informed consent (voluntariness, discussion of alternatives, adequate information, and competence) were evident for each of these patients, contrasting LEP patients with patients not needing an interpreter. We present case examples of difficulties related to each of these criteria, and compare informed consent scores for consultations requiring interpretation and those which did not. RESULTS: We describe multiple communication problems related to the use of untrained interpreters, or reliance on clinicians’ own limited Spanish. These LEP patients appear to be consistently disadvantaged in each of the criteria we examined, and informed consent scores were notably lower for consultations which occurred across a language barrier. CONCLUSIONS: In the absence of adequate Spanish interpretation, it was uncertain whether these LEP patients were provided the quality and content of information needed to assure that they are genuinely informed. We offer some low-cost practice suggestions that might mitigate these problems, and improve the quality of language interpretation, which is essential to assuring informed choice in health care for LEP patients

    Drug reformulation for a neglected disease. The NANOHAT project to develop a safer more effective sleeping sickness drug.

    Get PDF
    BACKGROUND: Human African trypanosomiasis (HAT or sleeping sickness) is caused by the parasite Trypanosoma brucei sspp. The disease has two stages, a haemolymphatic stage after the bite of an infected tsetse fly, followed by a central nervous system stage where the parasite penetrates the brain, causing death if untreated. Treatment is stage-specific, due to the blood-brain barrier, with less toxic drugs such as pentamidine used to treat stage 1. The objective of our research programme was to develop an intravenous formulation of pentamidine which increases CNS exposure by some 10-100 fold, leading to efficacy against a model of stage 2 HAT. This target candidate profile is in line with drugs for neglected diseases inititative recommendations. METHODOLOGY: To do this, we evaluated the physicochemical and structural characteristics of formulations of pentamidine with Pluronic micelles (triblock-copolymers of polyethylene-oxide and polypropylene oxide), selected candidates for efficacy and toxicity evaluation in vitro, quantified pentamidine CNS delivery of a sub-set of formulations in vitro and in vivo, and progressed one pentamidine-Pluronic formulation for further evaluation using an in vivo single dose brain penetration study. PRINCIPAL FINDINGS: Screening pentamidine against 40 CNS targets did not reveal any major neurotoxicity concerns, however, pentamidine had a high affinity for the imidazoline2 receptor. The reduction in insulin secretion in MIN6 β-cells by pentamidine may be secondary to pentamidine-mediated activation of β-cell imidazoline receptors and impairment of cell viability. Pluronic F68 (0.01%w/v)-pentamidine formulation had a similar inhibitory effect on insulin secretion as pentamidine alone and an additive trypanocidal effect in vitro. However, all Pluronics tested (P85, P105 and F68) did not significantly enhance brain exposure of pentamidine. SIGNIFICANCE: These results are relevant to further developing block-copolymers as nanocarriers, improving BBB drug penetration and understanding the side effects of pentamidine

    Expression profiling of familial breast cancers demonstrates higher expression of FGFR2 in BRCA2-associated tumors

    Get PDF
    BackgroundBRCA1- and BRCA2-associated tumors appear to have distinct molecular signatures. BRCA1-associated tumors are predominantly basal-like cancers, whereas BRCA2-associated tumors have a predominant luminal-like phenotype. These two molecular signatures reflect in part the two cell types found in the terminal duct lobular unit of the breast. To elucidate novel genes involved in these two spectra of breast tumorigenesis we performed global gene expression analysis on breast tumors from germline BRCA1 and BRCA2 mutation carriers. Methodology Breast tumor RNAs from 7 BRCA1 and 6 BRCA2 mutation carriers were profiled using UHN human 19K cDNA microarrays. Supervised univariate analyses were conducted to identify genes differentially expressed between BRCA1 and BRCA2-associated tumors. Selected discriminatory genes were validated using real time reverse transcription polymerase chain reaction in the tumor RNAs, and/or by immunohistochemistry (IHC) or by in situ hybridization (ISH) on tissue microarrays (TMAs) containing an independent set of 58 BRCA1 and 64 BRCA2-associated tumors. Results Genes more highly expressed in BRCA1-associated tumors included stathmin, osteopontin, TGFβ2 and Jagged 1 in addition to genes previously identified as characteristic of basal-like breast cancers. BRCA2-associated cancers were characterized by the higher relative expression of FGF1 and FGFR2. FGFR2 protein was also more highly expressed in BRCA2-associated cancers (P = 0.004). SignificanceBRCA1-associated tumours demonstrated increased expression of component genes of the Notch and TGFβ pathways whereas the higher expression of FGFR2 and FGF1 in BRCA2-associated cancers suggests the existence of an autocrine stimulatory loop

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Adaptor Template Oligo-Mediated Sequencing (ATOM-Seq) is a new ultra-sensitive UMI-based NGS library preparation technology for use with cfDNA and cfRNA

    No full text
    Liquid biopsy testing utilising Next Generation Sequencing (NGS) is rapidly moving towards clinical adoption for personalised oncology. However, before NGS can fulfil its potential any novel testing approach must identify ways of reducing errors, allowing separation of true low-frequency mutations from procedural artefacts, and be designed to improve upon current technologies. Popular NGS technologies typically utilise two DNA capture approaches; PCR and ligation, which have known limitations and seem to have reached a development plateau with only small, stepwise improvements being made. To maximise the ultimate utility of liquid biopsy testing we have developed a highly versatile approach to NGS: Adaptor Template Oligo Mediated Sequencing (ATOM-Seq). ATOM-Seq's strengths and versatility avoid the major limitations of both PCR- and ligation-based approaches. This technology is ligation free, simple, efficient, flexible, and streamlined, and it offers novel advantages that make it perfectly suited for use on highly challenging clinical material. Using reference and clinical materials, we demonstrate detection of known SNVs down to allele frequencies of 0.1% using as little as 20–25 ng of cfDNA, as well as the ability to detect fusions from RNA. We illustrate ATOM-Seq’s suitability for clinical testing by showing high concordance rates between paired cfDNA and FFPE clinical samples
    corecore