62 research outputs found

    Curation of NISEED, an integrative framework for the digital representation of embryonic development

    Get PDF
    NISEED (Network for In situ Expression and Embryological Data) is a generic infrastructure for the creation, maintenance and integration of molecular and anatomical information on model organisms. We applied it to ascidians which are marine invertebrate chordates. These animals constitute model organisms of choice for developmental biology because their embryos develop with a small number of cells and an invariant lineage, allowing their study with a cellular level of resolution. In ANISEED (Ascidian NISEED), embryogenesis of ascidian is represented at the level of the genome via functional gene annotations, cis-regulatory elements or gene expression data, at the level of the cell by representing its morphology, fates, lineage, and relations with its neighbors, or at the level of the whole embryo by representing its anatomy and morphogenesis at successive developmental stages. The system provides also tool and standard to enter, annotate, curate and manage data. All results can be accessed through the ANISEED website at "http://aniseed-ibdm.univ-mrs.fr":http://aniseed-ibdm.univ-mrs.fr
&#xa

    Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

    Get PDF
    Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Creating 3D Digital Replicas of Ascidian Embryos from Stacks of Confocal Images

    No full text
    During embryonic development, cell behaviors that are tightly coordinated both spatially and temporally integrate at the tissue level and drive embryonic morphogenesis. Over the past 20 years, advances in imaging techniques, in particular, the development of confocal imaging, have opened a new world in biology, not only giving us access to a wealth of information, but also creating new challenges. It is sometimes difficult to make the best use of the recordings of the complex, inherently three-dimensional (3D) processes we now can observe. In particular, these data are often not directly suitable for even simple but conceptually fundamental quantifications. This article describes a process whereby image stacks gathered from live or fixed ascidian embryos are digitalized and segmented to produce 3D embryo replicas. These replicas can then be interfaced via a 3D Virtual Embryo module to a model organism database (Aniseed) that allows one to relate the geometrical properties of cells and cell contacts to additional parameters such as cell lineage, cell fates, or the underlying genetic program. Such an integrated system can serve several general purposes. First, it makes it possible to quantify and better understand the dynamics of cell behaviors during embryonic development, including, for instance, the automatic detection of asymmetric cell divisions or the evolution of cell contacts. Second, the 3D Virtual Embryo software proposes a panel of mathematical shape descriptors to precisely quantify cellular geometries and generate a 3D identity card for each embryonic cell. Such reconstructions open the door to a detailed 3D simulation of morphogenesis

    Time-Lapse Imaging of Live Phallusia Embryos for Creating 3D Digital Replicas.

    No full text
    International audienceDuring embryonic development, cell behaviors that are tightly coordinated both spatially and temporally integrate at the tissue level and drive embryonic morphogenesis. Over the past 20 years, advances in imaging techniques, in particular, the development of confocal imaging, have opened a new world in biology, not only giving us access to a wealth of information, but also creating new challenges. It is sometimes difficult to make the best use of the recordings of the complex, inherently three-dimensional (3D) processes we now can observe. In particular, these data are often not directly suitable for even simple but conceptually fundamental quantifications. This article provides a method to fluorescently label and image structures of interest that will subsequently be reconstructed, such as cell membranes or nuclei. The protocol describes live imaging of Phallusia mammillata embryos, which are robust, colorless, and optically transparent with negligible autofluorescence. Their diameter ranges from 100 µm to 120 µm, which allows time-lapse microscopy of whole embryos using two-photon microscopy with a high-resolution objective. Although two-photon imaging is described in detail, any imaging technology that results in a z -stack may be used. The resulting image stacks can subsequently be digitalized and segmented to produce 3D embryo replicas that can be interfaced to a model organism database and used to quantify cell shapes

    Imaging of Fixed Ciona Embryos for Creating 3D Digital Replicas

    No full text
    During embryonic development, cell behaviors that are tightly coordinated both spatially and temporally integrate at the tissue level and drive embryonic morphogenesis. Over the past 20 years, advances in imaging techniques, in particular, the development of confocal imaging, have opened a new world in biology, not only giving us access to a wealth of information, but also creating new challenges. It is sometimes difficult to make the best use of the recordings of the complex, inherently three-dimensional (3D) processes we now can observe. In particular, these data are often not directly suitable for even simple but conceptually fundamental quantifications. This article presents a method for imaging embryonic development with cellular resolution in fixed ascidian embryos. A large fraction of the ascidian community primarily studies the development of the cosmopolitan ascidian Ciona intestinalis . Because the embryos of this species are insufficiently transparent and show significant autofluorescence, live imaging is difficult. Thus, whole embryos are fixed and optically cleared. They are then stained and imaged on a regular or two-photon confocal microscope. The resulting image stacks can subsequently be digitalized and segmented to produce 3D embryo replicas that can be interfaced to a model organism database and used to quantify cell shapes

    A major locus on chromosome 3p22 conferring predisposition to human herpesvirus 8 infection

    No full text
    International audienceInfection with human herpesvirus 8 (HHV-8), the etiological agent of Kaposi's sarcoma, has been shown to display strong familial aggregation, in countries in which HHV-8 infection is endemic. We investigated 40 large families (608 subjects aged one to 88 years) living in an isolated area of Cameroon in which HHV-8 is highly endemic. We performed a two-step genetic analysis for HHV-8 infection status (HHV-8+/HHV-8- determined by immunofluorescence) consisting of an initial segregation analysis followed by a model-based genome-wide linkage analysis. Overall HHV-8 seroprevalence was 60%, increasing with age. Segregation analysis provided strong evidence for a recessive major gene conferring predisposition to HHV-8 infection. This gene is predicted to have a major effect during childhood, with almost all homozygous predisposed subjects (∼7% of the population) becoming infected by the age of 10. Linkage analysis was carried out on the 15 most informative families, corresponding to 205 genotyped subjects. A single region on chromosome 3p22 was significantly linked to HHV-8 infection (LOD score=3.83, P=2.0 × 10(-5)). This study provides the first evidence that HHV-8 infection in children in endemic areas has a strong genetic basis involving at least one recessive major locus on chromosome 3p22
    corecore