3,835 research outputs found

    Cluster and group synchronization in delay-coupled networks

    Full text link
    We investigate the stability of synchronized states in delay-coupled networks where synchronization takes place in groups of different local dynamics or in cluster states in networks with identical local dynamics. Using a master stability approach, we find that the master stability function shows a discrete rotational symmetry depending on the number of groups. The coupling matrices that permit solutions on group or cluster synchronization manifolds show a very similar symmetry in their eigenvalue spectrum, which helps to simplify the evaluation of the master stability function. Our theory allows for the characterization of stability of different patterns of synchronized dynamics in networks with multiple delay times, multiple coupling functions, but also with multiple kinds of local dynamics in the networks' nodes. We illustrate our results by calculating stability in the example of delay-coupled semiconductor lasers and in a model for neuronal spiking dynamics.Comment: 11 pages, 7 figure

    Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states

    Full text link
    We study synchronization in delay-coupled oscillator networks, using a master stability function approach. Within a generic model of Stuart-Landau oscillators (normal form of super- or subcritical Hopf bifurcation) we derive analytical stability conditions and demonstrate that by tuning the coupling phase one can easily control the stability of synchronous periodic states. We propose the coupling phase as a crucial control parameter to switch between in-phase synchronization or desynchronization for general network topologies, or between in-phase, cluster, or splay states in unidirectional rings. Our results are robust even for slightly nonidentical elements of the network.Comment: 4 pages, 4 figure

    Analog power spectral density analysis of electroretinogram data

    Get PDF
    Analog power spectral density analysis of electroretinogram dat

    Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators

    Get PDF
    We consider networks of delay-coupled Stuart-Landau oscillators. In these systems, the coupling phase has been found to be a crucial control parameter. By proper choice of this parameter one can switch between different synchronous oscillatory states of the network. Applying the speed-gradient method, we derive an adaptive algorithm for an automatic adjustment of the coupling phase such that a desired state can be selected from an otherwise multistable regime. We propose goal functions based on both the difference of the oscillators and a generalized order parameter and demonstrate that the speed-gradient method allows one to find appropriate coupling phases with which different states of synchronization, e.g., in-phase oscillation, splay or various cluster states, can be selected.Comment: 8 pages, 7 figure

    Heavy-flavor dynamics in nucleus-nucleus collisions: from RHIC to LHC

    Get PDF
    The stochastic dynamics of c and b quarks in the fireball created in nucleus-nucleus collisions at RHIC and LHC is studied employing a relativistic Langevin equation, based on a picture of multiple uncorrelated random collisions with the medium. Heavy-quark transport coefficients are evaluated within a pQCD approach, with a proper HTL resummation of medium effects for soft scatterings. The Langevin equation is embedded in a multi-step setup developed to study heavy-flavor observables in pp and AA collisions, starting from a NLO pQCD calculation of initial heavy-quark yields, complemented in the nuclear case by shadowing corrections, k_T-broadening and nuclear geometry effects. Then, only for AA collisions, the Langevin equation is solved numerically in a background medium described by relativistic hydrodynamics. Finally, the propagated heavy quarks are made hadronize and decay into electrons. Results for the nuclear modification factor R_AA of heavy-flavor hadrons and electrons from their semi-leptonic decays are provided, both for RHIC and LHC beam energies.Comment: 4 pages, 2 figures (3 eps files); submitted for publication in the proceedings of "Quark Matter 2011", 23-28 May 2011, Annecy (France

    Direct photons ~basis for characterizing heavy ion collisions~

    Full text link
    After years of experimental and theoretical efforts, direct photons become a strong and reliable tool to establish the basic characteristics of a hot and dense matter produced in heavy ion collisions. The recent direct photon measurements are reviewed and a future prospect is given.Comment: 8 pages, 8 figures, Invited plenary talk at Quark Matter 200

    Synchronisation in networks of delay-coupled type-I excitable systems

    Full text link
    We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investigate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.Comment: 10 pages, 9 figure
    corecore