40 research outputs found

    Highly Molybdenum-Alloyed Materials Hastelloy BC-1 (2.4708) and B3 (2.4600): Diffusion Bonding Experiments and Evaluation of both Mechanical Behavior and Corrosion Resistance in Hot 70% Sulfuric Acid

    Get PDF
    Sulfuric acid is a widely used raw material in the chemical industry. Its corrosive effect on materials varies considerably, depending on impurities, temperature and water content. This is an issue for micro process apparatuses with thin walls. Such devices are often joint by diffusion bonding what may alter materials properties due to high temperatures and long dwell times. In this paper, two high molybdenum alloys, namely Hastelloy B3 and BC-1, were investigated. Diffusion bonding tests were performed at different temperatures. Tensile tests were carried out for different material conditions, to determine the change in mechanical strength and elongation at fracture values. The fracture behavior of both alloys was ductile and the fracture surfaces showed dimple structure. For diffusion bonded samples, weak spots or rather non-bonded areas were found. These obviously caused the onset of material failure and thus, degradation of mechanical properties. Tensile samples, aged in 70% sulfuric acid at 100 °C for 1000 h showed local corrosion attacks at the grain boundaries at the circumferential surfaces and joining planes—for Hastelloy B3 more pronounced than for Hastelloy BC-1. Accordingly, a further decrease of stress and elongation at fracture values was observed. However, 0.2% yield strength used for dimensioning components are found to be reasonable. As conclusion, at least Hastelloy BC-1 reveals both good mechanical properties and an excellent corrosion resistance, regardless of the heat treatment. This is a significant advance compared to the results obtained from a previously research project on four different alloys

    Subfunctionalization of Duplicated Zebrafish pax6 Genes by cis-Regulatory Divergence

    Get PDF
    Gene duplication is a major driver of evolutionary divergence. In most vertebrates a single PAX6 gene encodes a transcription factor required for eye, brain, olfactory system, and pancreas development. In zebrafish, following a postulated whole-genome duplication event in an ancestral teleost, duplicates pax6a and pax6b jointly fulfill these roles. Mapping of the homozygously viable eye mutant sunrise identified a homeodomain missense change in pax6b, leading to loss of target binding. The mild phenotype emphasizes role-sharing between the co-orthologues. Meticulous mapping of isolated BACs identified perturbed synteny relationships around the duplicates. This highlights the functional conservation of pax6 downstream (3′) control sequences, which in most vertebrates reside within the introns of a ubiquitously expressed neighbour gene, ELP4, whose pax6a-linked exons have been lost in zebrafish. Reporter transgenic studies in both mouse and zebrafish, combined with analysis of vertebrate sequence conservation, reveal loss and retention of specific cis-regulatory elements, correlating strongly with the diverged expression of co-orthologues, and providing clear evidence for evolution by subfunctionalization

    A putative nuclear function for mammalian Staufen.

    No full text
    In addition to its role in rRNA processing and ribosome assembly, the nucleolus plays a part in the assembly of non-ribosomal ribonucleoprotein particles (RNPs) that are destined for cytoplasmic RNA delivery. Recent evidence indicates that mammalian Staufen2, a brain-specific RNA-binding protein involved in RNA localization, can--at least transiently--enter the nucleolus. Therefore, the assembly of Staufen2 into transport-competent RNPs might occur in the nucleus before their export into the cytoplasm. This could provide new insights into the mechanisms of subcellular RNA localization
    corecore