32 research outputs found
History-based action selection bias in posterior parietal cortex.
Making decisions based on choice-outcome history is a crucial, adaptive ability in life. However, the neural circuit mechanisms underlying history-dependent decision-making are poorly understood. In particular, history-related signals have been found in many brain areas during various decision-making tasks, but the causal involvement of these signals in guiding behavior is unclear. Here we addressed this issue utilizing behavioral modeling, two-photon calcium imaging, and optogenetic inactivation in mice. We report that a subset of neurons in the posterior parietal cortex (PPC) closely reflect the choice-outcome history and history-dependent decision biases, and PPC inactivation diminishes the history dependency of choice. Specifically, many PPC neurons show history- and bias-tuning during the inter-trial intervals (ITI), and history dependency of choice is affected by PPC inactivation during ITI and not during trial. These results indicate that PPC is a critical region mediating the subjective use of history in biasing action selection
Disengagement of Motor Cortex during Long-Term Learning Tracks the Performance Level of Learned Movements
Not all movements require the motor cortex for execution. Intriguingly, dependence on motor cortex of a given movement is not fixed, but instead can dynamically change over the course of long-term learning. For instance, rodent forelimb movements that initially require motor cortex can become independent of the motor cortex after an extended period of training. However, it remains unclear whether long-term neural changes rendering the motor cortex dispensable are a simple function of the training length. To address this issue, we trained mice (both male and female) to perform two distinct forelimb movements, forward versus downward reaches with a joystick, concomitantly over several weeks, and then compared the involvement of the motor cortex between the two movements. Most mice achieved different levels of motor performance between the two movements after long-term training. Of the two movements, the one that achieved higher trial-to-trial consistency (i.e., consistent-direction movement) was significantly less affected by inactivation of motor cortex than the other (i.e., variable-direction movement). Two-photon calcium imaging of motor cortical neurons revealed that the consistent-direction movement activates fewer neurons, producing weaker and less consistent population activity than the variable-direction movement. Together, the motor cortex was less engaged and less necessary for learned movements that achieved higher levels of consistency. Thus, the long-term reorganization of neural circuits that frees the motor cortex from the learned movement is not a mere function of training length. Rather, this reorganization tracks the level of motor performance that the animal achieves during training.SIGNIFICANCE STATEMENT Long-term training of a movement reshapes motor circuits, disengaging motor cortex potentially for automatized execution of the learned movement. Acquiring new motor skills often involves learning of multiple movements (e.g., forehand and backhand strokes when learning tennis), but different movements do not always improve at the same time nor reach the same level of proficiency. Here we showed that the involvement of motor cortex after long-term training differs between similar yet distinct movements that reached different levels of expertise. Motor cortex was less engaged and less necessary for the more proficient movement. Thus, disengagement of motor cortex is not a simple function of training time, but instead tracks the level of expertise of a learned movement
Recommended from our members
Disengagement of motor cortex from movement control during long-term learning.
Motor learning involves reorganization of the primary motor cortex (M1). However, it remains unclear how the involvement of M1 in movement control changes during long-term learning. To address this, we trained mice in a forelimb-based motor task over months and performed optogenetic inactivation and two-photon calcium imaging in M1 during the long-term training. We found that M1 inactivation impaired the forelimb movements in the early and middle stages, but not in the late stage, indicating that the movements that initially required M1 became independent of M1. As previously shown, M1 population activity became more consistent across trials from the early to middle stage while task performance rapidly improved. However, from the middle to late stage, M1 population activity became again variable despite consistent expert behaviors. This later decline in activity consistency suggests dissociation between M1 and movements. These findings suggest that long-term motor learning can disengage M1 from movement control
Morphological Analysis of Activity-Reduced Adult-Born Neurons in the Mouse Olfactory Bulb
Adult-born neurons (ABNs) are added to the olfactory bulb (OB) throughout life in rodents. While many factors have been identified as regulating the survival and integration of ABNs into existing circuitry, the understanding of how these factors affect ABN morphology and connectivity is limited. Here we compare how cell intrinsic [small interfering RNA (siRNA) knock-down of voltage gated sodium channels NaV1.1–1.3] and circuit level (naris occlusion) reductions in activity affect ABN morphology during integration into the OB. We found that both manipulations reduce the number of dendritic spines (and thus likely the number of reciprocal synaptic connections) formed with the surrounding circuitry and inhibited dendritic ramification of ABNs. Further, we identified regions of ABN apical dendrites where the largest and most significant decreases occur following siRNA knock-down or naris occlusion. In siRNA knock-down cells, reduction of spines is observed in proximal regions of the apical dendrite. This suggests that distal regions of the dendrite may remain active independent of NaV1.1–1.3 channel expression, perhaps facilitated by activation of T-type calcium channels and NMDA receptors. By contrast, circuit level reduction of activity by naris occlusion resulted in a global depression of spine number. Together, these results indicate that ABNs retain the ability to develop their typical overall morphological features regardless of experienced activity, and activity modulates the number and location of formed connections
Gonadotropin-releasing hormone increased pregnancy risk in suckled beef cows not detected in estrus and subjected to a split-time artificial insemination program
Citation: Hill, S. L., Grieger, D. M., Olson, K. C., Jaeger, J. R., Dahlen, C. R., Crosswhite, M. R., . . . Stevenson, J. S. (2016). Gonadotropin-releasing hormone increased pregnancy risk in suckled beef cows not detected in estrus and subjected to a split-time artificial insemination program. Journal of Animal Science, 94(9), 3722-3728. doi:10.2527/jas2016-0582We hypothesized that GnRH would increase pregnancy risk (PR) in a split-time AI program for cows in which estrus was not detected. A total of 1,236 suckled beef cows at 12 locations in 3 states (Colorado, Kansas, and North Dakota) were enrolled. Before applying the fixed-time AI program, BCS was assessed. Cows were treated on d -7 with a progesterone insert concurrent with 100 mu g GnRH and on d 0 with 25 mg PGF(2 alpha) plus removal of the insert. Estrus-detection patches were affixed to cows at insert removal. Estrus was defined to have occurred when an estrus-detection patch was >50% colored (activated). Cows in estrus by 65 h (n = 758; 61.3% of all cows) were randomly allocated to 2 treatments: 1) 100 mu g GnRH and early + GnRH (E+G; n = 373) or 2) AI only at 65 h (early -no GnRH [E-G]; n = 385). The remaining cows were randomly allocated to 2 treatments: 1) 5(L+G; n = 252) or 2) AI only at 84 h (late no GnRH [L-G]; n = 226). Pregnancy was determined 35 d after AI via transrectal ultrasound. Pregnancy risk did not differ (P = 0.68) between E+G and E-G cows (61.9 vs. 60.4%, respectively). Conversely, for cows inseminated at 84 h, PR was greater (P = 0.01) in cows that received GnRH (L+G) compared with their herd mates not receiving GnRH (L-G; 41.7 vs. 30.8%, respectively). Of those cows not detected in estrus by 65 h, 42.1% were detected by 84 h, for a total expression of estrus by all cows of 77.6%. Administration of GnRH increased (P < 0.01) PR in cows not detected in estrus by 84 h (+ GnRH = 33.4% [n = 146] vs. no GnRH = 15.0% [n = 128]) but had no effect in cows expressing estrus by 84 h (+ GnRH = 65.3% [n = 103] vs. no GnRH = 61.7% [n = 97]). Neither estrus expression by 65 or 84 h nor PR was influenced by BCS, parity, or days postpartum at AI. Cows had greater PR when they had been detected in estrus before AI, and PR was improved by administration of GnRH at 65 h after insert removal in cows that were not detected in estrus and inseminated at 84 h
Type Ia Supernova Rate Measurements To Redshift 2.5 From CANDELS: Searching For Prompt Explosions In The Early Universe
dThe Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of -0.25 deg2 with -900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z 2.5. We classify -24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z =- 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only -3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation ( 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions-though further analysis and larger samples will be needed to examine that suggestion. Key words: infrared: general - supernovae:Astronom
Using estrus detection patches to optimally time insemination improved pregnancy risk in suckled beef cows enrolled in a fixed-time artificial insemination program
Citation: Hill, S. L., Grieger, D. M., Olson, K. C., Jaeger, J. R., Dahlen, C. R., Bridges, G. A., . . . Stevenson, J. S. (2016). Using estrus detection patches to optimally time insemination improved pregnancy risk in suckled beef cows enrolled in a fixed-time artificial insemination program. Journal of Animal Science, 94(9), 3703-3710. doi:10.2527/jas2016-0469A multilocation study examined pregnancy risk (PR) after delaying AI in suckled beef cows from 60 to 75 h when estrus had not been detected by 60 h in response to a 7-d CO-Synch + progesterone insert (CIDR) timed AI (TAI) program (d-7: CIDR insert concurrent with an injection of GnRH; d 0: PGF(2 alpha) injection and removal of CIDR insert; and GnRH injection at TAI [ 60 or 75 h after CIDR removal]). A total of 1,611 suckled beef cows at 15 locations in 9 states (CO, IL, KS, MN, MS, MT, ND, SD, and VA) were enrolled. Before applying the fixed-time AI program, BCS was assessed, and blood samples were collected. Estrus was defined to have occurred when an estrus detection patch was >50% colored (activated). Pregnancy was determined 35 d after AI via transrectal ultrasound. Cows (n = 746) detected in estrus by 60 h (46.3%) after CIDR removal were inseminated and treated with GnRH at AI (Control). Remaining nonestrous cows were allocated within location to 3 treatments on the basis of parity and days postpartum: 1) GnRH injection and AI at 60 h (early-early = EE; n = 292), 2) GnRH injection at 60 h and AI at 75 h (early-delayed = ED; n = 282), or 3) GnRH injection and AI at 75 h (delayed-delayed = DD; n = 291). Control cows had a greater (P < 0.01) PR (64.2%) than other treatments (EE = 41.7%, ED = 52.8%, DD = 50.0%). Use of estrus detection patches to delay AI in cows not in estrus by 60 h after CIDR insert removal (ED and DD treatments) increased (P < 0.05) PR to TAI when compared with cows in the EE treatment. More (P < 0.001) cows that showed estrus by 60 h conceived to AI at 60 h than those not showing estrus (64.2% vs. 48.1%). Approximately half (49.2%) of the cows not in estrus by 60 h had activated patches by 75 h, resulting in a greater (P < 0.05) PR than their nonestrous herd mates in the EE (46.1% vs. 34.5%), ED (64.2% vs. 39.2%), and DD (64.8% vs. 31.5%) treatments, respectively. Overall, cows showing estrus by 75 h (72.7%) had greater (P < 0.001) PR to AI (61.3% vs. 37.9%) than cows not showing estrus. Use of estrus detection patches to allow for a delayed AI in cows not in estrus by 60 h after removal of the CIDR insert improved PR to TAI by optimizing the timing of the AI in those cows
A Critical Assessment of Stellar Mass Measurement Methods
In this paper we perform a comprehensive study of the main sources of random
and systematic errors in stellar mass measurement for galaxies using their
Spectral Energy Distributions (SEDs). We use mock galaxy catalogs with
simulated multi-waveband photometry (from U-band to mid-infrared) and known
redshift, stellar mass, age and extinction for individual galaxies. Given
different parameters affecting stellar mass measurement (photometric S/N
ratios, SED fitting errors, systematic effects, the inherent degeneracies and
correlated errors), we formulated different simulated galaxy catalogs to
quantify these effects individually. We studied the sensitivity of stellar mass
estimates to the codes/methods used, population synthesis models, star
formation histories, nebular emission line contributions, photometric
uncertainties, extinction and age. For each simulated galaxy, the difference
between the input stellar masses and those estimated using different simulation
catalogs, , was calculated and used to identify the most
fundamental parameters affecting stellar masses. We measured different
components of the error budget, with the results listed as follows: (1). no
significant bias was found among different codes/methods, with all having
comparable scatter; (2). A source of error is found to be due to photometric
uncertainties and low resolution in age and extinction grids; (3). The median
of stellar masses among different methods provides a stable measure of the mass
associated with any given galaxy; (4). The deviations in stellar mass strongly
correlate with those in age, with a weaker correlation with extinction; (5).
the scatter in the stellar masses due to free parameters are quantified, with
the sensitivity of the stellar mass to both the population synthesis codes and
inclusion of nebular emission lines studied.Comment: 33 pages, 20 Figures, Accepted for publication in Astrophysical
Journa
Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints
Structural, thermobarometric, and thermochronologic investigations of the Kangmar Dome, southern Tibet, suggest that both extensional and contractional deformational histories are preserved within the dome. The dome is cored by an orthogneiss which is mantled by staurolite + kyanite zone metasedimentary rocks; metamorphic grade dies out up section and is defined by a series of concentric kyanite-in, staurolite-in, garnet-in, and chloritoid-in isograds. Three major deformational events, two older penetrative events and a younger doming event, are preserved. The oldest event, D1, resulted in approximately E-W trending tight to isoclinal folds of bedding with an associated moderately to steeply north dipping axial planar foliation, S1. The second event, D2, resulted in a high strain mylonitic foliation, S2, which defines the domal structure, and an associated approximately N-S trending stretching and mineral alignment lineation. Shear sense during formation of S2 varied from dominantly top S shear on the south dipping flank of the dome to top N shear on the north dipping flank. The central part of the dome exhibits either opposing shear sense indicators or symmetric fabrics. Microtextural relations indicate that peak metamorphism occurred post-D1 and pre- to early D2 deformation. Quantitative thermobarometry yields peak metamorphic conditions of ∼445°C and 370 MPa in garnet zone rocks, increasing to 625°C and 860 MPa in staurolite + kyanite zone rocks. Pressures and temperatures increase with depth and northward within a single structural horizon across the dome and the apparent gradient in pressure is ∼20% of the expected gradient, suggesting that the rocks were subvertically shortened after the pressure gradient was frozen in. Mica 40Ar/39Ar thermochronology yields 15.24 ± 0.05 to 10.94 ± 0.30 Ma cooling ages that increase with depth and young northward within a single structural horizon across the dome. Diffusion modeling of potassium feldspar 40Ar/39Ar spectra yield rapid cooling rates (∼10–30°C/Myr) between ∼11.5 and 10 Ma and apatite fission track ages range from 7.9 ± 3.0 to 4.1 ± 1.9 Ma, with a mean age of ∼5.5 Ma. Both data sets show symmetric cooling across the dome between ∼11 and 5.5 Ma. The S2 mylonitic foliation, peak metamorphic isobars and isotherms, and mica 40Ar/39Ar isochrons are domed, whereas potassium feldspar 40Ar/39Ar and apatite fission track isochrons are not, suggesting that doming occurred at ∼11 Ma. Our data do not support simple, end-member metamorphic core complex-type extension, diapirism, or duplex models for gneiss dome formation. Rather, we suggest that the formation of extensional fabrics occurred within a zone of coaxial strain in the root zone of the Southern Tibetan Detachment System (STDS), implying that normal slip along the STDS and extensional fabrics within the Kangmar Dome were the result of gravitational collapse of overthickened crust. Subsequent doming during the middle Miocene is attributed to thrusting upward and southward over a north dipping ramp above cold Tethyan sediments. Middle Miocene thrust faulting in the Kangmar Dome region is synchronous with continued normal slip along the STDS and thrust motion along the Renbu Zedong thrust fault, suggesting that extension and contraction was occurring simultaneously within southern Tibet
Morphological analysis of activity-reduced adult-born neurons in the mouse olfactory bulb.
Adult-born neurons (ABNs) are added to the olfactory bulb (OB) throughout life in rodents. While many factors have been identified as regulating the survival and integration of ABNs into existing circuitry, the understanding of how these factors affect ABN morphology and connectivity is limited. Here we compare how cell intrinsic [small interfering RNA (siRNA) knock-down of voltage gated sodium channels Na(V)1.1-1.3] and circuit level (naris occlusion) reductions in activity affect ABN morphology during integration into the OB. We found that both manipulations reduce the number of dendritic spines (and thus likely the number of reciprocal synaptic connections) formed with the surrounding circuitry and inhibited dendritic ramification of ABNs. Further, we identified regions of ABN apical dendrites where the largest and most significant decreases occur following siRNA knock-down or naris occlusion. In siRNA knock-down cells, reduction of spines is observed in proximal regions of the apical dendrite. This suggests that distal regions of the dendrite may remain active independent of Na(V)1.1-1.3 channel expression, perhaps facilitated by activation of T-type calcium channels and NMDA receptors. By contrast, circuit level reduction of activity by naris occlusion resulted in a global depression of spine number. Together, these results indicate that ABNs retain the ability to develop their typical overall morphological features regardless of experienced activity, and activity modulates the number and location of formed connections.</p