792 research outputs found

    The Deepest Supernova Search is Realized in the Hubble Ultra Deep Field Survey

    Full text link
    The Hubble Ultra Deep Field Survey has not only provided the deepest optical and near infrared views of universe, but has enabled a search for the most distant supernovae to z~2.2. We have found four supernovae by searching spans of integrations of the Ultra Deep Field and the Ultra Deep Field Parallels taken with the Hubble Space Telescope paired with the Advanced Camera for Surveys and the Near Infrared Multi Object Spectrometer. Interestingly, none of these supernovae were at z>1.4, despite the substantially increased sensitivity per unit area to such objects over the Great Observatories Origins Deep Survey. We present the optical photometric data for the four supernovae. We also show that the low frequency of Type Ia supernovae observed at z>1.4 is statistically consistent with current estimates of the global star formation history combined with the non-trivial assembly time of SN Ia progenitors.Comment: 24 pages (6 figures), submitted to the Astronomical Journa

    The Diffuse Supernova Neutrino Background is detectable in Super-Kamiokande

    Full text link
    The Diffuse Supernova Neutrino Background (DSNB) provides an immediate opportunity to study the emission of MeV thermal neutrinos from core-collapse supernovae. The DSNB is a powerful probe of stellar and neutrino physics, provided that the core-collapse rate is large enough and that its uncertainty is small enough. To assess the important physics enabled by the DSNB, we start with the cosmic star formation history of Hopkins & Beacom (2006) and confirm its normalization and evolution by cross-checks with the supernova rate, extragalactic background light, and stellar mass density. We find a sufficient core-collapse rate with small uncertainties that translate into a variation of +/- 40% in the DSNB event spectrum. Considering thermal neutrino spectra with effective temperatures between 4-6 MeV, the predicted DSNB is within a factor 4-2 below the upper limit obtained by Super-Kamiokande in 2003. Furthermore, detection prospects would be dramatically improved with a gadolinium-enhanced Super-Kamiokande: the backgrounds would be significantly reduced, the fluxes and uncertainties converge at the lower threshold energy, and the predicted event rate is 1.2-5.6 events /yr in the energy range 10-26 MeV. These results demonstrate the imminent detection of the DSNB by Super-Kamiokande and its exciting prospects for studying stellar and neutrino physics.Comment: 14 pages, 5 figures, 4 tables, some added discussions, accepted for publication in Physical Review

    Warm perineal compresses during the second stage of labor for reducing perineal trauma: A meta-analysis

    Get PDF
    OBJECTIVE: Perineal trauma may have a negative impact on women's lives as it has been associated with perineal pain, urinary incontinence and sexual dysfunction. The aim of this systematic review and meta-analysis of randomized controlled trials was to evaluate the effectiveness of warm compresses during the second stage of labor in reducing perineal trauma. METHODS: Electronic databases were searched from inception of each database to May 2019. Inclusion criteria were randomized trials comparing warm compresses (i.e. intervention group) with no warm compresses (i.e. control group) during the second stage of labor. Types of participants included pregnant women planning to have a spontaneous vaginal birth at term with a singleton in a cephalic presentation. The primary outcome was the incidence of intact perineum. Meta-analysis was performed using the Cochrane Collaboration methodology with results being reported as relative risk (RR) with 95% confidence interval (CI). RESULTS: Seven trials, including 2103 participants, were included in this meta-analysis. Women assigned to the intervention group received warm compresses made from clean washcloths or perineal pads immersed in warm tap water. These were held against the woman's perineum during and in between pushes in second stage. Warm compresses usually started when the baby's head began to distend the perineum or when there was active fetal descent in the second stage of labor. We found a higher rate of intact perineum in the intervention group compared to the control group (22.4% vs 15.4%; RR 1.46, 95% CI 1.22 to 1.74); a lower rate of third degree tears (1.9% vs 5.0%; RR 0.38, 95% CI 0.22 to 0.64), fourth degree tears (0.0% vs 0.9%; RR 0.11, 95% CI 0.01 to 0.86) third and fourth degree tears combined (1.9% vs 5.8%; RR 0.34, 95% CI 0.20 to 0.56) and episiotomy (10.4% vs 17.1%; RR 0.61, 95% CI 0.51 to 0.74). CONCLUSION: Warm compresses applied during the second stage of labor increase the incidence of intact perineum and lower the risk of episiotomy and severe perineal trauma

    Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos

    Full text link
    Decays of radionuclides throughout the Earth's interior produce geothermal heat, but also are a source of antineutrinos. The (angle-integrated) geoneutrino flux places an integral constraint on the terrestrial radionuclide distribution. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radionuclide distribution. We develop the general formalism for the neutrino angular distribution, and we present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the Earth's interior, but offering a direct measure of the radioactive Earth, both (1) revealing the Earth's inner structure as probed by radionuclides, and (2) allowing for a complete determination of the radioactive heat generation as a function of radius. We present the geoneutrino angular distribution for the favored Earth model which has been used to calculate geoneutrino flux. In this model the neutrino generation is dominated by decays in the Earth's mantle and crust; this leads to a very ``peripheral'' angular distribution, in which 2/3 of the neutrinos come from angles > 60 degrees away from the downward vertical. We note the possibility of that the Earth's core contains potassium; different geophysical predictions lead to strongly varying, and hence distinguishable, central intensities (< 30 degrees from the downward vertical). Other uncertainties in the models, and prospects for observation of the geoneutrino angular distribution, are briefly discussed. We conclude by urging the development and construction of antineutrino experiments with angular sensitivity. (Abstract abridged.)Comment: 25 pages, RevTeX, 7 figures. Comments welcom

    Dust in the Host Galaxies of Supernovae

    Full text link
    We present Spitzer/MIPS 24 micron observations of 50 supernova host galaxies at 0.1<z<1.7 in the Great Observatories Origins Deep Survey (GOODS) fields. We also discuss the detection of SN host galaxies in SCUBA/850 micron observations of GOODS-N and Spitzer/Infrared Spectrograph (IRS) 16 micron observations of GOODS-S. About 60% of the host galaxies of both Type Ia and core-collapse supernovae are detected at 24 microns, a detection rate which is a factor of 1.5 higher than the field galaxy population. Among the 24 micron detected hosts, 80% have far-infrared luminosities that are comparable to or greater than the optical luminosity indicating the presence of substantial amounts of dust in the hosts. The median bolometric luminosity of the Type Ia SN hosts is \~10^10.5 L_sun, very similar to that of core-collapse SN hosts. Using the high resolution Hubble/ACS data, we have studied the variation of rest-frame optical/ultraviolet colors within the 24 micron detected galaxies at z<1 to understand the origin of the dust emission. The 24 micron detected galaxies have average colors which are redder by ~0.1 mag than the 24 micron undetected hosts while the latter show greater scatter in internal colors. This suggests that a smooth distribution of dust is responsible for the observed mid- and far-infrared emission. 70% of supernovae that have been detected in the GOODS fields are located within the half-light radius of the hosts where dust obscuration effects are significant. Although the dust emission that we detect cannot be translated into a line of sight A_V, we suggest that the factor of 2-3 larger scatter in the peak B-V colors that is seen in the high-z Type Ia supernova sample relative to the low-z supernovae might be partially due to the dust that we detect in the hosts.Comment: 22 pages, 4 figures, 4 tables; ApJ 635, Dec 20, 2005 issu

    Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach

    Full text link
    We present a method for computing optical absorption spectra by means of a Bethe-Salpeter equation approach, which is based on a conserving linear response calculation for electron-hole coherences in the presence of an external electromagnetic field. This procedure allows, in principle, for the determination of the electron-hole correlation function self-consistently with the corresponding single-particle Green function. We analyze the general approach for a "one-shot" calculation of the photoabsorption cross section of finite systems, and discuss the importance of scattering and dephasing contributions in this approach. We apply the method to the closed-shell clusters Na_4, Na^+_9 and Na^+_(21), treating one active electron per Na atom.Comment: 9 pages, 3 figure

    Photo-z optimization for measurements of the BAO radial direction

    Get PDF
    Baryon Acoustic Oscillations (BAO) in the radial direction offer a method to directly measure the Universe expansion history, and to set limits to space curvature when combined to the angular BAO signal. In addition to spectroscopic surveys, radial BAO might be measured from accurate enough photometric redshifts obtained with narrow-band filters. We explore the requirements for a photometric survey using Luminous Red Galaxies (LRG) to competitively measure the radial BAO signal and discuss the possible systematic errors of this approach. If LRG were a highly homogeneous population, we show that the photo-z accuracy would not substantially improve by increasing the number of filters beyond 10\sim 10, except for a small fraction of the sources detected at high signal-to-noise, and broad-band filters would suffice to achieve the target σz=0.003(1+z)\sigma_z = 0.003 (1+z) for measuring radial BAO. Using the LRG spectra obtained from SDSS, we find that the spectral variability of LRG substantially worsens the achievable photometric redshift errors, and that the optimal system consists of \sim 30 filters of width Δλ/λ0.02\Delta \lambda / \lambda \sim 0.02. A S/N>20S/N > 20 is generally necessary at the filters on the red side of the HαH\alpha break to reach the target photometric accuracy. We estimate that a 5-year survey in a dedicated telescope with etendue in excess of 60 m2deg2{\rm m}^2 {\rm deg}^2 would be necessary to obtain a high enough density of galaxies to measure radial BAO with sufficiently low shot noise up to z=0.85z= 0.85. We conclude that spectroscopic surveys have a superior performance than photometric ones for measuring BAO in the radial direction.Comment: Replaced with minor editorial comments and one extra figure. Results unchange

    Families of spherical caps: spectra and ray limit

    Full text link
    We consider a family of surfaces of revolution ranging between a disc and a hemisphere, that is spherical caps. For this family, we study the spectral density in the ray limit and arrive at a trace formula with geodesic polygons describing the spectral fluctuations. When the caps approach the hemisphere the spectrum becomes equally spaced and highly degenerate whereas the derived trace formula breaks down. We discuss its divergence and also derive a different trace formula for this hemispherical case. We next turn to perturbative corrections in the wave number where the work in the literature is done for either flat domains or curved without boundaries. In the present case, we calculate the leading correction explicitly and incorporate it into the semiclassical expression for the fluctuating part of the spectral density. To the best of our knowledge, this is the first calculation of such perturbative corrections in the case of curvature and boundary.Comment: 28 pages, 7 figure

    The Age-Redshift Relation for Standard Cosmology

    Full text link
    We present compact, analytic expressions for the age-redshift relation τ(z)\tau(z) for standard Friedmann-Lema\^ \itre-Robertson-Walker (FLRW) cosmology. The new expressions are given in terms of incomplete Legendre elliptic integrals and evaluate much faster than by direct numerical integration.Comment: 13 pages, 3 figure

    Emission-Line Galaxies from the Hubble Space Telescope Probing Evolution and Reionization Spectroscopically (PEARS) Grism Survey. II: The Complete Sample

    Get PDF
    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitess grism spectroscopic data obtained with the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random survey of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0< z<1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allows us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 Ha, [OIII] and/or [OII] emission lines have been identified in the PEARS sample of ~906 galaxies down to a limiting flux of ~1e-18 erg/s/cm^2. The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M_* > 1e9} M_sun decreases by an order of magnitude at z<0.5 relative to the number at 0.5<z<0.9 in support of the argument for galaxy downsizing.Comment: Submitted. 48 pages. 19 figures. Accepted to Ap
    corecore