16 research outputs found

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    Gene flow drives genomic diversity in Asian Pikas distributed along the core and range‐edge habitats in the Himalayas

    No full text
    Abstract Studying the genetic variation among different species distributed across their core and range‐edge habitats can provide valuable insights into how genetic variation changes across the species' distribution range. This information can be important for understanding local adaptation, as well as for conservation and management efforts. In this study, we have carried out genomic characterization of six species of Asian Pikas distributed along their core and range‐edge habitats in the Himalayas. We utilized a population genomics approach using ~28,000 genome‐wide SNP markers obtained from restriction‐site associated DNA sequencing. We identified low nucleotide diversity and high inbreeding coefficients in all six species across their core and range‐edge habitats. We also identified evidence of gene flow among genetically diverse species. Our results provide evidence of reduced genetic diversity in Asian pikas distributed across the Himalayas and the neighboring regions and indicate that recurrent gene flow is possibly a key mechanism for maintaining genetic diversity and adaptive potential in these pikas. However, full‐scale genomics studies that utilize whole‐genome sequencing approaches will be needed to quantify the direction and timing of gene flow and functional changes associated with introgressed regions in the genome. Our results represent an important step toward understanding the patterns and consequences of gene flow in species, sampled at the least studied, yet climatically vulnerable part of their habitat that can be further used to inform conservation strategies that promote connectivity and gene flow between populations

    Exploring potentialities of avian genomic research in Nepalese Himalayas

    No full text
    Abstract Nepal, a small landlocked country in South Asia, holds about 800 km of Himalayan Mountain range including the Earth’s highest mountain. Within such a mountain range in the north and plain lowlands in the south, Nepal provides a habitat for about 9% of global avian fauna. However, this diversity is underrated because of the lack of enough studies, especially using molecular tools to quantify and understand the distribution patterns of diversity. In this study, we reviewed the studies in the last two decades (2000‒2019) that used molecular methods to study the biodiversity in Nepal to examine the ongoing research trend and focus. Although Nepalese Himalaya has many opportunities for cutting-edge molecular research, our results indicated that the rate of genetic/genomic studies is much slower compared to the regional trends. We found that genetic research in Nepal heavily relies on resources from international institutes and that too is mostly limited to research on species monitoring, distribution, and taxonomic validations. Local infrastructures to carry out cutting-edge genomic research in Nepal are still in their infancy and there is a strong need for support from national/international scientists, universities, and governmental agencies to expand such genomic infrastructures in Nepal. We particularly highlight avian fauna as a potential future study system in this region that can be an excellent resource to explore key biological questions such as understanding eco-physiology and molecular basis of organismal persistence to changing environment, evolutionary processes underlying divergence and speciation, or mechanisms of endemism and restrictive distribution of species

    Data from: Genetics, morphology and ecology reveal a cryptic pika lineage in the Sikkim Himalaya

    No full text
    Asian pika species are morphologically ∌similar and have overlapping ranges. This leads to uncertainty and species misidentification in the field. Phylogenetic analyses of such misidentified samples leads to taxonomic ambiguity. The ecology of many pika species remains understudied, particularly in the Himalaya, where sympatric species could be separated by elevation and/or substrate. We sampled, measured, and acquired genetic data from pikas in the Sikkim Himalaya. Our analyses revealed a cryptic lineage, Ochotona sikimaria, previously reported as a subspecies of O. thibetana. The results support the elevation of this lineage to the species level, as it is genetically divergent from O. thibetana, as well as sister species, O. cansus (endemic to central China) and O. curzoniae (endemic to the Tibetan plateau). The Sikkim lineage diverged from its sister species’ about 1.7–0.8 myr ago, coincident with uplift events in the Himalaya. Our results add to the recent spate of cryptic diversity identified from the eastern Himalaya and highlight the need for further study within the Ochotonidae
    corecore