120 research outputs found

    Validation of the effect of cross-calibrated GOES solar proton effective energies on derived integral fluxes by comparison with STEREO observations

    Get PDF
    The derivation of integral fluxes from instrument coincidence rates requires accurate knowledge of their effective energies. Recent cross calibrations of GOES with the high-energy-resolution Interplanetary Monitoring Platform (IMP) 8 Goddard Medium Energy Experiment (GME) (Sandberg et al., Geophys. Res. Lett, 41, 4435, 2014a) gave significantly lower effective energies than those currently used by the NOAA Space Weather Prediction Center to calculate solar proton integral fluxes from GOES rates. This implies systematically lower integral fluxes than currently produced. This paper quantifies the differences between the current and the cross-calibrated GOES integral fluxes and validates the latter. Care is taken to rule out the spectral resolution of the measurements or different integration algorithms as major contributors to differences in the magnitudes of the derived integral fluxes. The lower effective energies are validated by comparison with the independent, high-resolution observations by the STEREO Low-Energy Telescope (LET) and High-Energy Telescope (HET) during the December 2006 solar proton events. The current GOES product is similar to the >10 MeV integral fluxes recalculated by using the Sandberg et al. [2014a] effective energies but is substantially greater at higher energies. (The median ratios of the current to the recalculated fluxes are 1.1 at >10 MeV, 1.7 at >30 MeV, 2.1 at >60 MeV, and 2.9 at >100 MeV.) By virtue of this validation, the cross-calibrated GOES integral fluxes should be considered more accurate than the current NOAA product. The results of this study also demonstrate good consistency between the two long-term IMP 8 GME and STEREO LET and HET solar proton data sets

    Developing diagnostics for input-output systems: the effects of certain linear and nonlinear filters on the correlation integral

    No full text
    International audienceInput-output systems are characterized by applying time series analysis techniques developed for autonomous systems to the input and the output time series separately and using the results as nonlinear statistics of the time series distributions. Two examples are presented using the correlation integral as a nonlinear statistic: the first one examines the change in the statistic when several sample input time series are passed through a nonlinear filter. The rectifier is chosen as the filter because it models, at first approximation, the effect of dayside magnetospheric reconnection to the interplanetary magnetic field and solar wind input. The changes in the correlation integral are used to characterize the filter response. A second example compares a linear filter of the rectified solar wind input to the observed auroral geomagnetic activity in terms of their correlation integrals. Implications for models of the solar wind-magneto- sphere coupling are discussed

    From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics

    No full text
    International audienceWe show that distinct changes in scaling parameters of the Dst index time series occur as an intense magnetic storm approaches, revealing a gradual reduction in complexity. The remarkable acceleration of energy release ? manifested in the increase in susceptibility ? couples to the transition from anti-persistent (negative feedback) to persistent (positive feedback) behavior and indicates that the occurence of an intense magnetic storm is imminent. The main driver of the Dst index, the VBSouth electric field component, does not reveal a similar transition to persistency prior to the storm. This indicates that while the magnetosphere is mostly driven by the solar wind the critical feature of persistency in the magnetosphere is the result of a combination of solar wind and internal magnetospheric activity rather than solar wind variations alone. Our results suggest that the development of an intense magnetic storm can be studied in terms of "intermittent criticality" that is of a more general character than the classical self-organized criticality phenomena, implying the predictability of the magnetosphere

    Association of radiation belt electron enhancements with earthward penetration of Pc5 ULF waves: a case study of intense 2001 magnetic storms

    Get PDF
    Geospace magnetic storms, driven by the solar wind, are associated with increases or decreases in the fluxes of relativistic electrons in the outer radiation belt. We examine the response of relativistic electrons to four intense magnetic storms, during which the minimum of the Dst index ranged from −105 to −387 nT, and compare these with concurrent observations of ultra-low-frequency (ULF) waves from the trans-Scandinavian IMAGE magnetometer network and stations from multiple magnetometer arrays available through the worldwide SuperMAG collaboration. The latitudinal and global distribution of Pc5 wave power is examined to determine how deep into the magnetosphere these waves penetrate. We then investigate the role of Pc5 wave activity deep in the magnetosphere in enhancements of radiation belt electrons population observed in the recovery phase of the magnetic storms. We show that, during magnetic storms characterized by increased post-storm electron fluxes as compared to their pre-storm values, the earthward shift of peak and inner boundary of the outer electron radiation belt follows the Pc5 wave activity, reaching L shells as low as 3–4. In contrast, the one magnetic storm characterized by irreversible loss of electrons was related to limited Pc5 wave activity that was not intensified at low L shells. These observations demonstrate that enhanced Pc5 ULF wave activity penetrating deep into the magnetosphere during the main and recovery phase of magnetic storms can, for the cases examined, distinguish storms that resulted in increases in relativistic electron fluxes in the outer radiation belts from those that did not

    Chaos and magnetospheric dynamics

    No full text
    International audienceOur intention in this work is to show, by using two different methods, that magnetospheric dynamics reveal low dimensional chaos. In the first method we extend the chaotic analysis for the AE index time series by including singular value decomposition (SVD) analysis in combination with Theiler's test in order to discriminate dynamical chaos from self-affinity or "crinkliness". The estimated fractality of the AE index time series which is obtained belongs to a strange attractor structure with close returns in the reconstructed phase space. In the second method we extend the linear equivalent magnetospheric electric circuit to a nonlinear one, the arithmetic solution of which reveals low dimensional chaotic dynamics. Both methods strongly support the existence of low dimensional magnetospheric chaos

    An event of extreme relativistic and ultra-relativistic electron enhancements following the arrival of consecutive corotating interaction regions: coordinated observations by Van Allen Probes, Arase, THEMIS and Galileo satellites

    Get PDF
    [During July to October of 2019, a sequence of isolated Corotating Interaction Regions (CIRs) impacted the magnetosphere, for four consecutive solar rotations, without any interposed Interplanetary Coronal Mass Ejections. Even though the series of CIRs resulted in relatively weak geomagnetic storms, the net effect of the outer radiation belt during each disturbance was different, depending on the electron energy. During the August-September CIR group, significant multi-MeV electron enhancements occurred, up to ultra-relativistic energies of 9.9 MeV in the heart of the outer Van Allen radiation belt. These characteristics deemed this time period a fine case for studying the different electron acceleration mechanisms. In order to do this, we exploited coordinated data from the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms Mission (THEMIS), Arase and Galileo satellites, covering seed, relativistic and ultra-relativistic electron populations, investigating their Phase Space Density (PSD) profile dependence on the values of the second adiabatic invariant K, ranging from near-equatorial to off equatorial mirroring populations. Our results indicate that different acceleration mechanisms took place for different electron energies. The PSD profiles were dependent not only on the μ value, but also on the K value, with higher K values corresponding to more pronounced local acceleration by chorus waves. The 9.9 MeV electrons were enhanced prior to the 7.7 MeV, indicating that different mechanisms took effect on different populations. Finally, all ultra-relativistic enhancements took place below geosynchronous orbit, emphasizing the need for more Medium Earth Orbit (MEO) missions.]80NSSC19K0845 - NASAPublished versio

    The major geoeffective solar eruptions of 2012 March 7: comprehensive Sun-to-Earth analysis

    Get PDF
    During the interval 2012 March 7-11 the geospace experienced a barrage of intense space weather phenomena including the second largest geomagnetic storm of solar cycle 24 so far. Significant ultra-low-frequency wave enhancements and relativistic-electron dropouts in the radiation belts, as well as strong energetic-electron injection events in the magnetosphere were observed. These phenomena were ultimately associated with two ultra-fast (>2000 kms-1) coronal mass ejections (CMEs), linked to two X-class flares launched on early 2012 March 7. Given that both powerful events originated from solar active region NOAA 11429 and their onsets were separated by less than an hour, the analysis of the two events and the determination of solar causes and geospace effects are rather challenging. Using satellite data from a flotilla of solar, heliospheric and magnetospheric missions a synergistic Sun-to-Earth study of diverse observational solar, interplanetary and magnetospheric data sets was performed. It was found that only the second CME was Earth-directed. Using a novel method, we estimated its near-Sun magnetic field at 13R⊙ to be in the range [0.01, 0.16] G. Steep radial fall-offs of the near-Sun CME magnetic field are required to match the magnetic fields of the corresponding interplanetary CME (ICME) at 1 AU. Perturbed upstream solar-wind conditions, as resulting from the shock associated with the Earth-directed CME, offer a decent description of its kinematics. The magnetospheric compression caused by the arrival at 1 AU of the shock associated with the ICME was a key factor for radiation-belt dynamics.Publisher PDFPeer reviewe
    corecore