40 research outputs found

    Legitimacy defense during post-merger integration: Between coupling and compartmentalization

    Get PDF
    During post-merger integration, the realization of the benefits of potential synergies depends on managing the legitimacy of the merger. However, we still know little about how threats that change stakeholders’ assessments of a merger’s legitimacy are managed. This study is based on the merger case of Air New Zealand’s trans-national acquisition of Ansett Australia where a delegitimizing event occurred at Ansett relatively early after the integration had started. The study builds a framework of an evolving legitimation process depicting the oscillation between legitimation responses that maintain the coupling between the two organizations and a compartmentalization response used to manage diverse stakeholders’ legitimacy demands and illegitimacy spillover concerns. We explain how these legitimation responses can create an unproductive oscillation where stakeholder assessments of illegitimacy build up and ultimately become unresolvable. Our processual framework provides novel insights regarding when attempts to defend legitimacy can prove self-defeating, demonstrating how previous responses emphasizing integration or separation can affect the success of subsequent swings back to coupling or compartmentalization

    Impact of anthropogenic and biogenic sources on the seasonal variation in the molecular composition of urban organic aerosols : a field and laboratory study using ultra-high-resolution mass spectrometry

    Get PDF
    This study presents the molecular composition of organic aerosol (OA) using ultra-high-resolution mass spectrometry (Orbitrap) at an urban site in Central Europe (Zurich, Switzerland). Specific source spectra were also analysed, including samples representative of woodburning emissions from Alpine valleys during wood-burning pollution episodes and smog chamber investigations of woodsmoke, as well as samples from Hyytiala, which were strongly influenced by biogenic secondary organic aerosol. While samples collected during winter in Alpine valleys have a molecular composition remarkably similar to fresh laboratory wood-burning emissions, winter samples from Zurich are influenced by more aged wood-burning emissions. In addition, other organic aerosol emissions or formation pathways seem to be important at the latter location in winter. Samples from Zurich during summer are similar to those collected in Hyytiala and are predominantly impacted by oxygenated compounds with an H/C ratio of 1.5, indicating the importance of biogenic precursors for secondary organic aerosol (SOA) formation at this location (summertime Zurich - carbon number 7.6, O : C 0.7; Hyytiala - carbon number 10.5, O : C 0.57). We could explain the strong seasonality of the molecular composition at a typical European site by primary and aged wood-burning emissions and biogenic secondary organic aerosol formation during winter and summer, respectively. Results presented here likely explain the rather constant seasonal predominance of non-fossil organic carbon at European locations.Peer reviewe

    An exploration of influences on women’s birthplace decision-making in New Zealand: a mixed methods prospective cohort within the Evaluating Maternity Units study

    Get PDF
    BACKGROUND: There is worldwide debate surrounding the safety and appropriateness of different birthplaces for well women. One of the primary objectives of the Evaluating Maternity Units prospective cohort study was to compare the clinical outcomes for well women, intending to give birth in either an obstetric-led tertiary hospital or a free-standing midwifery-led primary maternity unit. This paper addresses a secondary aim of the study – to describe and explore the influences on women’s birthplace decision-making in New Zealand, which has a publicly funded, midwifery-led continuity of care maternity system. METHODS: This mixed method study utilised data from the six week postpartum survey and focus groups undertaken in the Christchurch area in New Zealand (2010–2012). Christchurch has a tertiary hospital and four primary maternity units. The survey was completed by 82% of the 702 study participants, who were well, pregnant women booked to give birth in one of these places. All women received midwifery-led continuity of care, regardless of their intended or actual birthplace. RESULTS: Almost all the respondents perceived themselves as the main birthplace decision-makers. Accessing a ‘specialist facility’ was the most important factor for the tertiary hospital group. The primary unit group identified several factors, including ‘closeness to home’, ‘ease of access’, the ‘atmosphere’ of the unit and avoidance of ‘unnecessary intervention’ as important. Both groups believed their chosen birthplace was the right and ‘safe’ place for them. The concept of ‘safety’ was integral and based on the participants’ differing perception of safety in childbirth. CONCLUSIONS: Birthplace is a profoundly important aspect of women’s experience of childbirth. This is the first published study reporting New Zealand women’s perspectives on their birthplace decision-making. The groups’ responses expressed different ideologies about childbirth. The tertiary hospital group identified with the ‘medical model’ of birth, and the primary unit group identified with the ‘midwifery model’ of birth. Research evidence affirming the ‘clinical safety’ of primary units addresses only one aspect of the beliefs influencing women’s birthplace decision-making. In order for more women to give birth at a primary unit other aspects of women’s beliefs need addressing, and much wider socio-political change is required

    Insights into organic-Aerosol sources via a novel laser-desorption/ionization mass spectrometry technique applied to one year of PM10 samples from nine sites in central Europe

    Get PDF
    We assess the benefits of offline laser-desorption/ionization mass spectrometry in understanding ambient particulate matter (PM) sources. The technique was optimized for measuring PM collected on quartz-fiber filters using silver nitrate as an internal standard for m\uc4\u9d\ue2\u80\ua2z calibration. This is the first application of this technique to samples collected at nine sites in central Europe throughout the entire year of 2013 (819 samples). Different PM sources were identified by positive matrix factorization (PMF) including also concomitant measurements (such as NOx, levoglucosan, and temperature). By comparison to reference mass spectral signatures from laboratory wood burning experiments as well as samples from a traffic tunnel, three biomass burning factors and two traffic factors were identified. The wood burning factors could be linked to the burning conditions; the factors related to inefficient burns had a larger impact on air quality in southern Alpine valleys than in northern Switzerland. The traffic factors were identified as primary tailpipe exhaust and most possibly aged/secondary traffic emissions. The latter attribution was supported by radiocarbon analyses of both the organic and elemental carbon. Besides these sources, factors related to secondary organic aerosol were also separated. The contribution of the wood burning emissions based on LDI-PMF (laser-desorption/ionization PMF) correlates well with that based on AMS-PMF (aerosol mass spectrometer PMF) analyses, while the comparison between the two techniques for other components is more complex

    Long-term chemical analysis and organic aerosol source apportionment at 9 sites in Central Europe : Source identification and uncertainty assessment

    Get PDF
    Long-term monitoring of the organic aerosol is important for epidemiological studies, validation of atmospheric models, and air quality management. In this study, we apply a recently developed filter-based offline methodology of the 20 aerosol mass spectrometer to investigate the regional and seasonal differences of contributing organic aerosol sources. We present offline-AMS measurements for particulate matter smaller than 10 \u3bcm 9 stations in central Europe with different exposure characteristics for the entire year of 2013 (819 samples). The focus of this study is a detailed source apportionment analysis (using PMF) including in-depth assessment of the related uncertainties. Primary organic aerosol (POA) is separated in three components: hydrocarbon-like OA which is related to traffic emissions (HOA), cooking OA (COA), and biomass- 25 burning OA (BBOA). We observe enhanced production of secondary organic aerosol (SOA) in summer, following the increase in biogenic emissions with temperature (summer oxygenated OA, SOOA). In addition, a SOA component was extracted that correlated with anthropogenic secondary inorganic species which is dominant in winter (winter oxygenated OA, WOOA). A factor (SC-OA) explaining sulfur-containing fragments (CH3SO2+), which has an event-driven temporal behavior, was also identified. The relative yearly average factor contributions range for HOA from 3 to 15%, for COA from 30 3 to 31%, for BBOA from 11 to 61%, for SC-OA from 5 to 23%, for WOOA from 14 to 28%, and for SOOA from 14 to 40%. The uncertainty of the relative average factor contribution lies between 5 and 9% of OA. At the sites north of the alpine crest, the sum of HOA, COA, and BBOA (POA) contributes less to OA (POA/OA=0.3) than at the southern alpine valley sites (0.6). BBOA is the main contributor to POA with 88% in alpine valleys and 43% north of the alpine crest. Furthermore, the influence of primary biological particles (PBOA), not resolved by PMF, is estimated and could contribute significantly to OA in PM10

    Nighttime NO emissions strongly suppress chlorine and nitrate radical formation during the winter in Delhi

    Get PDF
    Atmospheric pollution in urban regions is highly influenced by oxidants due to their important role in the formation of secondary organic aerosol (SOA) and smog. These include the nitrate radical (NO3), which is typically considered a nighttime oxidant, and the chlorine radical (Cl), an extremely potent oxidant that can be released in the morning in chloride-rich environments as a result of nocturnal build-up of nitryl chloride (ClNO2). Chloride makes up a higher percentage of particulate matter in Delhi than has been observed anywhere else in the world, which results in Cl having an unusually strong influence in this city. Here, we present observations and model results revealing that atmospheric chemistry in Delhi exhibits an unusual diel cycle that is controlled by high concentrations of NO during the night. As a result of this, the formation of both NO3 and dinitrogen pentoxide (N2O5), a precursor of ClNO2 and thus Cl, are suppressed at night and increase to unusually high levels during the day. Our results indicate that a substantial reduction in nighttime NO has the potential to increase both nocturnal oxidation via NO3 and the production of Cl during the day.</p

    Economic appraisal of new technology in the absence of survival data--The case of total hip replacement

    No full text
    The development of total hip replacement has reached a level at which little further inprovement in pain relief or quality of life can be expected from the introduction of new prosthetic technology. Rather, it is reasonable to expect longer trouble-free prosthetic life. This paper develops a mathematical model for a comparative economic appraisal of two types of prostheses, the conventional cemented one and the new cementless one. The lack of reliable survivorship data precludes reaching definite conclusions. However, by extensive sensitivity analysis with respect to a number of cost parameters the model can be used to derive conditions under which the cementless prosthesis is more cost effective. Expert medical judgement can then be used to gage whether these conditions are likely to be satisfied. The paper highlights the importance of collecting statistically valid performance data on any new medical technology from its first introduction. Without these, its full-scale adoption will be based largely on subjective grounds rather than a proper cost benefit analysis. It finally shows how both aspects--economic modeling and scientific data collection--form part of an integrated management programme for the economic evaluation of new medical technology.

    Advanced source apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-segregated measurements over a nearly 2-year period

    Get PDF
    Carbonaceous aerosols are related to adverse human health effects. Therefore, identification of their sources and analysis of their chemical composition is important. The offline AMS (aerosol mass spectrometer) technique offers quantitative separation of organic aerosol (OA) factors which can be related to major OA sources, either primary or secondary. While primary OA can be more clearly separated into sources, secondary (SOA) source apportionment is more challenging because different sources – anthropogenic or natural, fossil or non-fossil – can yield similar highly oxygenated mass spectra. Radiocarbon measurements provide unequivocal separation between fossil and non-fossil sources of carbon. Here we coupled these two offline methods and analysed the OA and organic carbon (OC) of different size fractions (particulate matter below 10 and 2.5 µm – PM10 and PM2.5, respectively) from the Alpine valley of Magadino (Switzerland) during the years 2013 and 2014 (219 samples). The combination of the techniques gave further insight into the characteristics of secondary OC (SOC) which was rather based on the type of SOC precursor and not on the volatility or the oxidation state of OC, as typically considered. Out of the primary sources separated in this study, biomass burning OC was the dominant one in winter, with average concentrations of 5.36 ± 2.64 µg m−3 for PM10 and 3.83 ± 1.81 µg m−3 for PM2.5, indicating that wood combustion particles were predominantly generated in the fine mode. The additional information from the size-segregated measurements revealed a primary sulfur-containing factor, mainly fossil, detected in the coarse size fraction and related to non-exhaust traffic emissions with a yearly average PM10 (PM2.5) concentration of 0.20 ± 0.24 µg m−3 (0.05 ± 0.04 µg m−3). A primary biological OC (PBOC) was also detected in the coarse mode peaking in spring and summer with a yearly average PM10 (PM2.5) concentration of 0.79 ± 0.31 µg m−3 (0.24 ± 0.20 µg m−3). The secondary OC was separated into two oxygenated, non-fossil OC factors which were identified based on their seasonal variability (i.e. summer and winter oxygenated organic carbon, OOC) and a third anthropogenic OOC factor which correlated with fossil OC mainly peaking in winter and spring, contributing on average 13 % ± 7 % (10 % ± 9 %) to the total OC in PM10 (PM2.5). The winter OOC was also connected to anthropogenic sources, contributing on average 13 % ± 13 % (6 % ± 6 %) to the total OC in PM10 (PM2.5). The summer OOC (SOOC), stemming from oxidation of biogenic emissions, was more pronounced in the fine mode, contributing on average 43 % ± 12 % (75 % ± 44 %) to the total OC in PM10 (PM2.5). In total the non-fossil OC significantly dominated the fossil OC throughout all seasons, by contributing on average 75 % ± 24 % to the total OC. The results also suggested that during the cold period the prevailing source was residential biomass burning while during the warm period primary biological sources and secondary organic aerosol from the oxidation of biogenic emissions became important. However, SOC was also formed by aged fossil fuel combustion emissions not only in summer but also during the rest of the year

    Source-specific light absorption by carbonaceous components in the complex aerosol matrix from yearly filter-based measurements

    Get PDF
    Understanding the sources of light-absorbing organic (brown) carbon (BrC) and its interaction with black carbon (BC) and other non-refractory particulate matter (NR-PM) fractions is important for reducing uncertainties in the aerosol direct radiative forcing. In this study, we combine multiple filter-based techniques to achieve long-term, spectrally resolved, source- and species-specific atmospheric absorption closure. We determine the mass absorption efficiency (MAE) in dilute bulk solutions at 370 nm to be equal to 1.4 m2 g−1 for fresh biomass smoke, 0.7 m2 g−1 for winter-oxygenated organic aerosol (OA), and 0.13 m2 g−1 for other less absorbing OA. We apply Mie calculations to estimate the contributions of these fractions to total aerosol absorption. While enhanced absorption in the near-UV has been traditionally attributed to primary biomass smoke, here we show that anthropogenic oxygenated OA may be equally important for BrC absorption during winter, especially at an urban background site. We demonstrate that insoluble tar balls are negligible in residential biomass burning atmospheric samples of this study and thus could attribute the totality of the NR-PM absorption at shorter wavelengths to methanol-extractable BrC. As for BC, we show that the mass absorption cross-section (MAC) of this fraction is independent of its source, while we observe evidence for a filter-based lensing effect associated with the presence of NR-PM components. We find that bare BC has a MAC of 6.3 m2 g−1 at 660 nm and an absorption Ångström exponent of 0.93 ± 0.16, while in the presence of coatings its absorption is enhanced by a factor of ∼ 1.4. Based on Mie calculations of closure between observed and predicted total light absorption, we provide an indication for a suppression of the filter-based lensing effect by BrC. The total absorption reduction remains modest, ∼ 10 %–20 % at 370 nm, and is restricted to shorter wavelengths, where BrC absorption is significant. Overall, our results allow an assessment of the relative importance of the different aerosol fractions to the total absorption for aerosols from a wide range of sources and atmospheric ages. When integrated with the solar spectrum at 300–900 nm, bare BC is found to contribute around two-thirds of the solar radiation absorption by total carbonaceous aerosols, amplified by the filter-based lensing effect (with an interquartile range, IQR, of 8 %–27 %), while the IQR of the contributions by particulate BrC is 6 %–13 % (13 %–20 % at the rural site during winter). Future studies that will directly benefit from these results include (a) optical modelling aiming at understanding the absorption profiles of a complex aerosol composed of BrC, BC and lensing-inducing coatings; (b) source apportionment aiming at understanding the sources of BC and BrC from the aerosol absorption profiles; (c) global modelling aiming at quantifying the most important aerosol absorbers.ISSN:1680-7375ISSN:1680-736
    corecore