832 research outputs found

    Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data

    Get PDF
    Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol–cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays an important role in regulating cloud brightness in the pristine oceanic atmosphere remains largely unexplored. We used 9 yr of global satellite data and ocean climatologies to derive parameterizations of the temporal variability of (a) production fluxes of sulfur aerosols formed by the oxidation of the biogenic gas dimethylsulfide emitted from the sea surface; (b) production fluxes of secondary organic aerosols from biogenic organic volatiles; (c) emission fluxes of biogenic primary organic aerosols ejected by wind action on sea surface; and (d) emission fluxes of sea salt also lifted by the wind upon bubble bursting. Series of global monthly estimates of these fluxes were correlated to series of potential cloud condensation nuclei (CCN) numbers derived from satellite (MODIS). More detailed comparisons among weekly series of estimated fluxes and satellite-derived cloud droplet effective radius (r[subscript e]) data were conducted at locations spread among polluted and clean regions of the oceanic atmosphere. The outcome of the statistical analysis was that positive correlation to CCN numbers and negative correlation to r[subscript e] were common at mid and high latitude for sulfur and organic secondary aerosols, indicating both might be important in seeding cloud droplet activation. Conversely, primary aerosols (organic and sea salt) showed widespread positive correlations to CCN only at low latitudes. Correlations to r[subscript e] were more variable, non-significant or positive, suggesting that, despite contributing to large shares of the marine aerosol mass, primary aerosols are not widespread major drivers of the variability of cloud microphysics. Validation against ground measurements pointed out that the parameterizations used captured fairly well the variability of aerosol production fluxes in most cases, yet some caution is warranted because there is room for further improvement, particularly for primary organic aerosol. Uncertainties and synergies are discussed, and recommendations of research needs are given

    Sub-milliarcsecond precision spectro-astrometry of Be stars

    Full text link
    The origin of the disks around Be stars is still not known. Further progress requires a proper parametrization of their structure, both spatially and kinematically. This is challenging as the disks are very small. Here we assess whether a novel method is capable of providing these data. We obtained spectro astrometry around the Pa beta line of two bright Be stars, alpha Col and zeta Tau, to search for disk signatures. The data, with a pixel to pixel precision of the centroid position of 0.3..0.4 milliarcsecond is the most accurate such data to date. Artefacts at the 0.85 mas level are present in the data, but these are readily identified as they were non-repeatable in our redundant datasets. This does illustrate the need of taking multiple data to avoid spurious detections. The data are compared with simple model simulations of the spectro astrometric signatures due to rotating disks around Be stars. The upper limits we find for the disk radii correspond to disk sizes of a few dozen stellar radii if they rotate Keplerian. This is very close to observationally measured and theoretically expected disk sizes, and this paper therefore demonstrates that spectro-astrometry, of which we present the first such attempt, has the potential to resolve the disks around Be stars.Comment: 6 pages, A&A accepte

    The Rise and Fall of Debris Disks: MIPS Observations of h and chi Persei and the Evolution of Mid-IR Emission from Planet Formation

    Full text link
    We describe Spitzer/MIPS observations of the double cluster, h and χ\chi Persei, covering a ∌\sim 0.6 square-degree area surrounding the cores of both clusters. The data are combined with IRAC and 2MASS data to investigate ∌\sim 616 sources from 1.25-24 ÎŒm\mu m. We use the long-baseline KsK_{s}-[24] color to identify two populations with IR excess indicative of circumstellar material: Be stars with 24 ÎŒm\mu m excess from optically-thin free free emission and 17 fainter sources (J∌\sim 14-15) with [24] excess consistent with a circumstellar disk. The frequency of IR excess for the fainter sources increases from 4.5 ÎŒm\mu m through 24 ÎŒm\mu m. The IR excess is likely due to debris from the planet formation process. The wavelength-dependent behavior is consistent with an inside-out clearing of circumstellar disks. A comparison of the 24 ÎŒm\mu m excess population in h and χ\chi Per sources with results for other clusters shows that 24 ÎŒm\mu m emission from debris disks 'rises' from 5 to 10 Myr, peaks at ∌\sim 10-15 Myr, and then 'falls' from ∌\sim 15/20 Myr to 1 Gyr.Comment: 48 pages, 15 figures, accepted for publication in The Astrophysical Journa

    A representative sample of Be stars IV: Infrared Photometry and the Continuum Excess

    Get PDF
    We present infra-red (JHK) photometry of 52 isolated Be stars of spectral types O9--B9 and luminosity classes III--V. We describe a new method of reduction, enabling separation of interstellar reddening and circumstellar excess. Using this technique we find that the disc emission makes a maximum contribution to the optical (B-V) colour of a few tenths of a magnitude. We find strong correlations between a range of emission lines (H\alpha, Br\gamma, Br11, and Br18) from the Be stars' discs, and the circumstellar continuum excesses. We also find that stellar rotation and disc excess are correlated.Comment: 10 pages, 9 figures, accepted for publication in Astronomy and Astrophysics. Other papers in this series can be obtained at http://cwis.livjm.ac.uk/astro/research/environs.htm

    Estimating Be Star Disk Radii using H-alpha Emission Equivalent Widths

    Full text link
    We present numerical models of the circumstellar disks of Be stars, and we describe the resulting synthetic H-alpha emission lines and maps of the wavelength-integrated emission flux projected onto the sky. We demonstrate that there are monotonic relationships between the emission line equivalent width and the ratio of the angular half-width at half maximum of the projected disk major axis to the radius of the star. These relationships depend mainly upon the temperatures of the disk and star, the inclination of the disk normal to the line of sight, and the adopted outer boundary for the disk radius. We show that the predicted H-alpha disk radii are consistent with those observed directly through long baseline interferometry of nearby Be stars (especially once allowance is made for disk truncation in binaries and for dilution of the observed H-alpha equivalent width by continuum disk flux in the V-band).Comment: 12 pages, 2 figures, ApJL in pres

    Tumour growth in mice resistant to diet-induced obesity

    Get PDF
    Obesity is a chronic disease with associated increases in the incidence, and a reduction in survival, of many cancer types. Obesity results from an imbalance in calorie intake and calorie requirement. This study aimed to investigate the separate effects of high-fat diet and obesity on cancer in an animal model resistant to diet-induced obesity. Male BALB/c mice fed long-term on a high-fat, Western-style diet were implanted with syngeneic CT26 colon adenocarcinoma cells and compared to mice fed normal diet. BALB/c mice on high-fat diet were 10% heavier than mice fed normal diet, with no difference in tumour growth rates or tumour cell proliferation. Subgroups of mice that became obese on high-fat diet, however, showed increased tumour growth rates compared to mice fed normal diet, whereas mice that remained slim showed no difference in tumour growth. Protein arrays identified several adipokines that were expressed at different levels, including serum Tissue Inhibitors of Metallo-Proteinases (TIMP-1) and tumour C-Reactive Protein (CRP). In conclusion, tumour growth was enhanced in mice unable to resist obesity, and adipokine profiles were affected by the animals’ ability to resist obesity

    Stellar Rotation in Young Clusters. I. Evolution of Projected Rotational Velocity Distributions

    Full text link
    Open clusters offer us the means to study stellar properties in samples with well-defined ages and initial chemical composition. Here we present a survey of projected rotational velocities for a large sample of mainly B-type stars in young clusters to study the time evolution of the rotational properties of massive stars. The survey is based upon moderate resolution spectra made with the WIYN 3.5 m and CTIO 4 m telescopes and Hydra multi-object spectrographs, and the target stars are members of 19 young open clusters with an age range of approximately 6 to 73 Myr. We made fits of the observed lines He I 4026, 4387, 4471 and Mg II 4481 using model theoretical profiles to find projected rotational velocities for a total of 496 OB stars. We find that there are fewer slow rotators among the cluster B-type stars relative to nearby B stars in the field. We present evidence consistent with the idea that the more massive B stars (M > 9 solar masses) spin down during their main sequence phase. However, we also find that the rotational velocity distribution appears to show an increase in the numbers of rapid rotators among clusters with ages of 10 Myr and higher. These rapid rotators appear to be distributed between the zero age and terminal age main sequence locations in the Hertzsprung-Russell diagram, and thus only a minority of them can be explained as the result of a spin up at the terminal age main sequence due to core contraction. We suggest instead that some of these rapid rotators may have been spun up through mass transfer in close binary systems.Comment: 33 pages, 11 figures, accepted by Ap

    Comparison of the Hα circumstellar disks in Be/X-ray binaries and Be stars

    Get PDF
    We present a comparative study of the circumstellar disks in Be/X-ray binaries and isolated Be stars based upon the Hα emission line. From this comparison it follows that the overall structure of the disks in the Be/X-ray binaries is similar to the disks of other Be stars, i.e. they are axisymmetric and rotationally supported. The factors for the line broadening (rotation and temperature) in the disks of the Be stars and the Be/X-ray binaries seem to be identical. However, we do detect some intriguing differences between the envelopes. On average, the circumstellar disks of the Be/X-ray binaries are twice as dense as the disks of the isolated Be stars. The different distribution of the Be/X-ray binaries and the Be stars seen in the full with half maximum versus peak separation diagram indicates that the disks in Be/X-ray binaries have on average a smaller size, probably truncated by the compact object.Reig Torres, Pablo, [email protected] ; Fabregat Llueca, Juan, [email protected]

    Observational Constraints on Interstellar Grain Alignment

    Full text link
    We present new multicolor photo-polarimetry of stars behind the Southern Coalsack. Analyzed together with multiband polarization data from the literature, probing the Chamaeleon I, Musca, rho Opiuchus, R CrA and Taurus clouds, we show that the wavelength of maximum polarization (lambda_max) is linearly correlated with the radiation environment of the grains. Using Far-Infrared emission data, we show that the large scatter seen in previous studies of lambda_max as a function of A_V is primarily due to line of sight effects causing some A_V measurements to not be a good tracer of the extinction (radiation field strength) seen by the grains being probed. The derived slopes in lambda_max vs. A_V, for the individual clouds, are consistent with a common value, while the zero intercepts scale with the average values of the ratios of total-to-selective extinction (R_V) for the individual clouds. Within each cloud we do not find direct correlations between lambda_max and R_V. The positive slope in consistent with recent developments in theory and indicating alignment driven by the radiation field. The present data cannot conclusively differentiate between direct radiative torques and alignment driven by H_2 formation. However, the small values of lambda_max(A_V=0), seen in several clouds, suggest a role for the latter, at least at the cloud surfaces. The scatter in the lambda_max vs. A_V relation is found to be associated with the characteristics of the embedded Young Stellar Objects (YSO) in the clouds. We propose that this is partially due to locally increased plasma damping of the grain rotation caused by X-rays from the YSOs.Comment: Accepted for publication in the Astrophysical Journa
    • 

    corecore