297 research outputs found

    Multipurpose silicon photonics signal processor core

    Full text link
    [EN] Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.J.C. acknowledges funding from the ERC Advanced Grant ERC-ADG-2016-741415 UMWP-Chip, I.G. acknowledges the funding through the Spanish MINECO Ramon y Cajal program. D.P. acknowledges financial support from the UPV through the FPI predoctoral funding scheme. D.J.T. acknowledges funding from the Royal Society for his University Research Fellowship.PĂ©rez-LĂłpez, D.; Gasulla Mestre, I.; Crudgington, L.; Thomson, DJ.; Khokhar, AZ.; Li, K.; Cao, W.... (2017). Multipurpose silicon photonics signal processor core. Nature Communications. 8(1925):1-9. https://doi.org/10.1038/s41467-017-00714-1S1981925Doerr, C. R. & Okamoto, K. Advances in silica planar lightwave circuits. J. Lightw. Technol. 24, 4763–4789 (2006).Coldren, L. A. et al. High performance InP-based photonic ICs—A tutorial. J. Lightw. Technol 29, 554–570 (2011).Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).Bogaerts, W. Design challenges in silicon photonics. IEEE J. Sel. Top. Quantum Electron. 20, 8202008 (2014).Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightw. Technol. 23, 401–412 (2005).Smit, M. K. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014).Leinse, A. et al. TriPleX waveguide platform: low-loss technology over a wide wavelength range. Proc. SPIE 8767, 87670E (2013).Kish, F. et al. From visible light-emitting diodes to large-scale III–V photonic integrated circuits. Proc. IEEE 101, 2255–2270 (2013).Heck, M. J. R. et al. Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).Sacher, W. et al. Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightw. Technol. 33, 901–910 (2015).Asghari, M. Silicon photonics: A low cost integration platform for datacom and telecom applications. In OFC/NFOEC 2008 – 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference 1–10 (San Diego, USA, 2008).Melati, D. et al. Integrated all-optical MIMO demultiplexer for mode- and wavelength-division-multiplexed transmission. Opt. Lett. 42, 342–345 (2017).Waterhouse, R. & Novak, D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16, 84–92 (2015).Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013).Iezekiel, S., Burla, M., Klamkin, J., Marpaung, D. & Capmany, J. RF engineering meets optoelectronics: Progress in integrated microwave photonics. IEEE Microw. Mag. 16, 28–45 (2015).Technology focus on microwave photonics. Nat. Photon. 5, 723 (2011).Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).Heideman, R. G. TriPleXℱ-based integrated optical ring resonators for lab-ona-chip-and environmental detection. IEEE J. Sel. Top. Quantum Electron. 18, 1583–1596 (2012).Estevez, M. C., Alvarez, M. & Lechuga, L. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev. 6, 463–487 (2012).Almeida, V. R., Barrios, C. A., Panepucci, R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP/InGaAsP. J. Lightw. Technol. 29, 1611–1619 (2011).Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).Hill, M. T. et al. A fast low power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004).SlavĂ­k, R. et al. Photonic temporal integrator for all-optical computing. Opt. Express 16, 18202–18214 (2008).Sun, C. et al. A monolithically-integrated chip-to-chip optical link in bulk CMOS. IEEE J. Solid-State Circ. 50, 828–844 (2015).Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).Assefa, S. et al. in Optical Fibre Communication Conference OMM6, https://www.osapublishing.org/abstract.cfm?uri=OFC-2011-OMM6 (Optical Society of America, 2011).Peruzzo, A. et al. Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224 (2011).Bonneau, D. et al. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. N. J. Phys. 14, 045003 (2012).Metcalf, B. J. et al. Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356 (2013).Muñoz, P. et al. in 16th International Conference on Transparent Optical Networks (ICTON), 1–4 (Graz, 2014).Ribeiro, A. et al. Demonstration of a 4×4-port universal linear circuit. Optica 3, 1348–1357 (2016).Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon 10, 190–195 (2016).Graydon, O. Birth of the programmable optical chip. Nat. Photon 10, 1 (2016).PĂ©rez, D., Gasulla, I. & Capmany, J. Software-defined reconfigurable microwave photonics processor. Opt. Express 23, 14640–14654 (2015).Miller, D. A. B. Self-configuring universal linear optical component. Photon. Res. 1, 1–15 (2013).Miller, D. A. B. Self-aligning universal beam coupler. Opt. Express 21, 6360–6370 (2013).Clements, W. R. et al. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).Capmany, J., Gasulla, I. & PĂ©rez, D. Microwave photonics: The programmable processor. Nat. Photon. 10, 6–8 (2016).PĂ©rez, D., Gasulla., Capmany, J. & Soref, R. A. Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express 24, 12093–12106 (2016).Madsen, C. K. & Zhao, J. H. Optical Filter Design and Analysis: A Signal Processing Approach. 1st edn. (Wiley, 1999).Jinguji, K. Synthesis of coherent two-port lattice-form optical delay-line circuit. J. Lightw. Technol. 13, 73–82 (1995).Jinguji, K. Synthesis of coherent two-port Optical delay-line circuit with ring waveguides. J. Lightw. Technol. 14, 1882–1898 (1996).Madsen, C. K. General IIR optical filter design for WDM applications using all-pass filters. J. Lightw. Technol. 18, 860–868 (2000).Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011).Yariv, A. et al. Coupled resonator optical waveguides: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).Hebner, J. E. et al. Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. J. Opt. Soc. Am. B. 21, 1665–1673 (2004).Fandiño, J. S. et al. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2017).Miller, D. A. B. All linear optical devices are mode converters. Opt. Express 20, 23985–23993 (2012).Reck, M. et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).Carolan, J. et al. Universal linear optics. Science 349, 711 (2015).Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information. 1st edn. (Cambridge University Press, 2001).Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).Grillanda, S. et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1, 129–136 (2014)

    On-chip CMOS-compatible all-optical integrator

    Get PDF
    One reason for using photonic devices is their speed—much faster than electronic circuits—but there are many challenges in integrating the two technologies. Ferrera et al. construct a CMOS-compatible monolithic optical waveform integrator, a key building block for photonic circuits

    A comparison of two molecular methods for diagnosing leptospirosis from three different sample types in patients presenting with fever in Laos.

    Get PDF
    OBJECTIVES: To compare two molecular assays (rrs quantitative PCR (qPCR) versus a combined 16SrRNA and LipL32 qPCR) on different sample types for diagnosing leptospirosis in febrile patients presenting to Mahosot Hospital, Vientiane, Laos. METHODS: Serum, buffy coat and urine samples were collected on admission, and follow-up serum ∌10 days later. Leptospira spp. culture and microscopic agglutination tests (MAT) were performed as reference standards. Bayesian latent class modelling was performed to estimate sensitivity and specificity of each diagnostic test. RESULTS: In all, 787 patients were included in the analysis: 4/787 (0.5%) were Leptospira culture positive, 30/787 (3.8%) were MAT positive, 76/787 (9.7%) were rrs qPCR positive and 20/787 (2.5%) were 16SrRNA/LipL32 qPCR positive for pathogenic Leptospira spp. in at least one sample. Estimated sensitivity and specificity (with 95% CI) of 16SrRNA/LipL32 qPCR on serum (53.9% (33.3%-81.8%); 99.6% (99.2%-100%)), buffy coat (58.8% (34.4%-90.9%); 99.9% (99.6%-100%)) and urine samples (45.0% (27.0%-66.7%); 99.6% (99.3%-100%)) were comparable with those of rrs qPCR, except specificity of 16SrRNA/LipL32 qPCR on urine samples was significantly higher (99.6% (99.3%-100%) vs. 92.5% (92.3%-92.8%), p <0.001). Sensitivities of MAT (16% (95% CI 6.3%-29.4%)) and culture (25% (95% CI 13.3%-44.4%)) were low. Mean positive Cq values showed that buffy coat samples were more frequently inhibitory to qPCR than either serum or urine (p <0.001). CONCLUSIONS: Serum and urine are better samples for qPCR than buffy coat, and 16SrRNA/LipL32 qPCR performs better than rrs qPCR on urine. Quantitative PCR on admission is a reliable rapid diagnostic tool, performing better than MAT or culture, with significant implications for clinical and epidemiological investigations of this global neglected disease

    Extraordinary carrier multiplication gated by a picosecond electric field pulse

    Get PDF
    The study of carrier multiplication has become an essential part of many-body physics and materials science as this multiplication directly affects nonlinear transport phenomena, and has a key role in designing efficient solar cells and electroluminescent emitters and highly sensitive photon detectors. Here we show that a 1-MVcm−1 electric field of a terahertz pulse, unlike a DC bias, can generate a substantial number of electron–hole pairs, forming excitons that emit near-infrared luminescence. The bright luminescence associated with carrier multiplication suggests that carriers coherently driven by a strong electric field can efficiently gain enough kinetic energy to induce a series of impact ionizations that can increase the number of carriers by about three orders of magnitude on the picosecond time scale

    Three phylogenetic groups have driven the recent population expansion of Cryptococcus neoformans.

    Get PDF
    Cryptococcus neoformans (C. neoformans var. grubii) is an environmentally acquired pathogen causing 181,000 HIV-associated deaths each year. We sequenced 699 isolates, primarily C. neoformans from HIV-infected patients, from 5 countries in Asia and Africa. The phylogeny of C. neoformans reveals a recent exponential population expansion, consistent with the increase in the number of susceptible hosts. In our study population, this expansion has been driven by three sub-clades of the C. neoformans VNIa lineage; VNIa-4, VNIa-5 and VNIa-93. These three sub-clades account for 91% of clinical isolates sequenced in our study. Combining the genome data with clinical information, we find that the VNIa-93 sub-clade, the most common sub-clade in Uganda and Malawi, was associated with better outcomes than VNIa-4 and VNIa-5, which predominate in Southeast Asia. This study lays the foundation for further work investigating the dominance of VNIa-4, VNIa-5 and VNIa-93 and the association between lineage and clinical phenotype

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe

    Investigation of Semiconductor Quantum Dots for Waveguide Electroabsorption Modulator

    Get PDF
    In this work, we investigated the use of 10-layer InAs quantum dot (QD) as active region of an electroabsorption modulator (EAM). The QD-EAM is a p-i-n ridge waveguide structure with intrinsic layer thickness of 0.4 ÎŒm, width of 10 ÎŒm, and length of 1.0 mm. Photocurrent measurement reveals a Stark shift of ~5 meV (~7 nm) at reverse bias of 3 V (75 kV/cm) and broadening of the resonance peak due to field ionization of electrons and holes was observed for E-field larger than 25 kV/cm. Investigation at wavelength range of 1,300–1320 nm reveals that the largest absorption change occurs at 1317 nm. Optical transmission measurement at this wavelength shows insertion loss of ~8 dB, and extinction ratio of ~5 dB at reverse bias of 5 V. Consequently, methods to improve the performance of the QD-EAM are proposed. We believe that QDs are promising for EAM and the performance of QD-EAM will improve with increasing research efforts

    Complete Killing of Caenorhabditis elegans by Burkholderia pseudomallei Is Dependent on Prolonged Direct Association with the Viable Pathogen

    Get PDF
    Background: Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. Much remains to be known about the contributions of genotypic variations within the bacteria and the host, and environmental factors that lead to the manifestation of the clinical symptoms of melioidosis. Methodology/Principal Findings: In this study, we showed that different isolates of B. pseudomallei have divergent ability to kill the soil nematode Caenorhabditis elegans. The rate of nematode killing was also dependent on growth media: B. pseudomallei grown on peptone-glucose media killed C. elegans more rapidly than bacteria grown on the nematode growth media. Filter and bacteria cell-free culture filtrate assays demonstrated that the extent of killing observed is significantly less than that observed in the direct killing assay. Additionally, we showed that B. pseudomallei does not persistently accumulate within the C. elegans gut as brief exposure to B. pseudomallei is not sufficient for C. elegans infection. Conclusions/Significance: A combination of genetic and environmental factors affects virulence. In addition, we have also demonstrated that a Burkholderia-specific mechanism mediating the pathogenic effect in C. elegans requires proliferating B

    GaAs-Based Superluminescent Light-Emitting Diodes with 290-nm Emission Bandwidth by Using Hybrid Quantum Well/Quantum Dot Structures

    Get PDF
    A high-performance superluminescent light-emitting diode (SLD) based upon a hybrid quantum well (QW)/quantum dot (QD) active element is reported and is assessed with regard to the resolution obtainable in an optical coherence tomography system. We report on the appearance of strong emission from higher order optical transition from the QW in a hybrid QW/QD structure. This additional emission broadening method contributes significantly to obtaining a 3-dB linewidth of 290 nm centered at 1200 nm, with 2.4 mW at room temperature
    • 

    corecore