381 research outputs found

    Coupling of thermal and mass diffusion in regular binary thermal lattice-gases

    Full text link
    We have constructed a regular binary thermal lattice-gas in which the thermal diffusion and mass diffusion are coupled and form two nonpropagating diffusive modes. The power spectrum is shown to be similar in structure as for the one in real fluids, in which the central peak becomes a combination of coupled entropy and concentration contributions. Our theoretical findings for the power spectra are confirmed by computer simulations performed on this model.Comment: 5 pages including 3 figures in RevTex

    Multipurpose silicon photonics signal processor core

    Full text link
    [EN] Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.J.C. acknowledges funding from the ERC Advanced Grant ERC-ADG-2016-741415 UMWP-Chip, I.G. acknowledges the funding through the Spanish MINECO Ramon y Cajal program. D.P. acknowledges financial support from the UPV through the FPI predoctoral funding scheme. D.J.T. acknowledges funding from the Royal Society for his University Research Fellowship.Pérez-López, D.; Gasulla Mestre, I.; Crudgington, L.; Thomson, DJ.; Khokhar, AZ.; Li, K.; Cao, W.... (2017). Multipurpose silicon photonics signal processor core. Nature Communications. 8(1925):1-9. https://doi.org/10.1038/s41467-017-00714-1S1981925Doerr, C. R. & Okamoto, K. Advances in silica planar lightwave circuits. J. Lightw. Technol. 24, 4763–4789 (2006).Coldren, L. A. et al. High performance InP-based photonic ICs—A tutorial. J. Lightw. Technol 29, 554–570 (2011).Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).Bogaerts, W. Design challenges in silicon photonics. IEEE J. Sel. Top. Quantum Electron. 20, 8202008 (2014).Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightw. Technol. 23, 401–412 (2005).Smit, M. K. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014).Leinse, A. et al. TriPleX waveguide platform: low-loss technology over a wide wavelength range. Proc. SPIE 8767, 87670E (2013).Kish, F. et al. From visible light-emitting diodes to large-scale III–V photonic integrated circuits. Proc. IEEE 101, 2255–2270 (2013).Heck, M. J. R. et al. Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).Sacher, W. et al. Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightw. Technol. 33, 901–910 (2015).Asghari, M. Silicon photonics: A low cost integration platform for datacom and telecom applications. In OFC/NFOEC 2008 – 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference 1–10 (San Diego, USA, 2008).Melati, D. et al. Integrated all-optical MIMO demultiplexer for mode- and wavelength-division-multiplexed transmission. Opt. Lett. 42, 342–345 (2017).Waterhouse, R. & Novak, D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16, 84–92 (2015).Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013).Iezekiel, S., Burla, M., Klamkin, J., Marpaung, D. & Capmany, J. RF engineering meets optoelectronics: Progress in integrated microwave photonics. IEEE Microw. Mag. 16, 28–45 (2015).Technology focus on microwave photonics. Nat. Photon. 5, 723 (2011).Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).Heideman, R. G. TriPleX™-based integrated optical ring resonators for lab-ona-chip-and environmental detection. IEEE J. Sel. Top. Quantum Electron. 18, 1583–1596 (2012).Estevez, M. C., Alvarez, M. & Lechuga, L. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev. 6, 463–487 (2012).Almeida, V. R., Barrios, C. A., Panepucci, R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP/InGaAsP. J. Lightw. Technol. 29, 1611–1619 (2011).Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).Hill, M. T. et al. A fast low power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004).Slavík, R. et al. Photonic temporal integrator for all-optical computing. Opt. Express 16, 18202–18214 (2008).Sun, C. et al. A monolithically-integrated chip-to-chip optical link in bulk CMOS. IEEE J. Solid-State Circ. 50, 828–844 (2015).Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).Assefa, S. et al. in Optical Fibre Communication Conference OMM6, https://www.osapublishing.org/abstract.cfm?uri=OFC-2011-OMM6 (Optical Society of America, 2011).Peruzzo, A. et al. Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224 (2011).Bonneau, D. et al. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. N. J. Phys. 14, 045003 (2012).Metcalf, B. J. et al. Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356 (2013).Muñoz, P. et al. in 16th International Conference on Transparent Optical Networks (ICTON), 1–4 (Graz, 2014).Ribeiro, A. et al. Demonstration of a 4×4-port universal linear circuit. Optica 3, 1348–1357 (2016).Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon 10, 190–195 (2016).Graydon, O. Birth of the programmable optical chip. Nat. Photon 10, 1 (2016).Pérez, D., Gasulla, I. & Capmany, J. Software-defined reconfigurable microwave photonics processor. Opt. Express 23, 14640–14654 (2015).Miller, D. A. B. Self-configuring universal linear optical component. Photon. Res. 1, 1–15 (2013).Miller, D. A. B. Self-aligning universal beam coupler. Opt. Express 21, 6360–6370 (2013).Clements, W. R. et al. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).Capmany, J., Gasulla, I. & Pérez, D. Microwave photonics: The programmable processor. Nat. Photon. 10, 6–8 (2016).Pérez, D., Gasulla., Capmany, J. & Soref, R. A. Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express 24, 12093–12106 (2016).Madsen, C. K. & Zhao, J. H. Optical Filter Design and Analysis: A Signal Processing Approach. 1st edn. (Wiley, 1999).Jinguji, K. Synthesis of coherent two-port lattice-form optical delay-line circuit. J. Lightw. Technol. 13, 73–82 (1995).Jinguji, K. Synthesis of coherent two-port Optical delay-line circuit with ring waveguides. J. Lightw. Technol. 14, 1882–1898 (1996).Madsen, C. K. General IIR optical filter design for WDM applications using all-pass filters. J. Lightw. Technol. 18, 860–868 (2000).Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011).Yariv, A. et al. Coupled resonator optical waveguides: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).Hebner, J. E. et al. Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. J. Opt. Soc. Am. B. 21, 1665–1673 (2004).Fandiño, J. S. et al. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2017).Miller, D. A. B. All linear optical devices are mode converters. Opt. Express 20, 23985–23993 (2012).Reck, M. et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).Carolan, J. et al. Universal linear optics. Science 349, 711 (2015).Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information. 1st edn. (Cambridge University Press, 2001).Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).Grillanda, S. et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1, 129–136 (2014)

    The programmable processor

    Full text link
    [EN] Reconfigurable optical chips made from 2D meshes of connected waveguides could pave the way for programmable, general purpose microwave photonics processors.Capmany Francoy, J.; Gasulla Mestre, I.; Pérez-López, D. (2016). The programmable processor. Nature Photonics. 10:6-8. doi:10.1038/nphoton.2015.254S6810Waterhouse, R. & Novak, D. IEEE Microwave Mag. 16, 84–92 (2015).Skubic, B., Bottari, G., Rostami, A., Cavaliere, F. & Ölen, P. IEEE J. Lightwave Technol. 33, 1084–1091 (2015).Nature Photonics Technology Focus http://www.nature.com/nphoton/journal/v5/n12/techfocus/index.html (2011).Marpaung, D. et al. Lasers Phot. Rev. 7, 506–538 (2013).Pérez, D., Gasulla, I. & Capmany, J. Opt. Express 23, 14640–14654 (2015).Zhuang, L. et al. Optica 2, 854–859 (2015).Smit, M. et al. Semicond. Sci. Technol. 28, 083001 (2014).Guan, B. B. et al. IEEE J. Sel. Top. Quantum Electron. 20, 359–368 (2014).Wang, J. et al. Nature Commun. 6, 5957 (2015).Miller, D. A. B. Optica 2, 747–750 (2015)

    Cellular Automata Simulating Experimental Properties of Traffic Flows

    Full text link
    A model for 1D traffic flow is developed, which is discrete in space and time. Like the cellular automaton model by Nagel and Schreckenberg [J. Phys. I France 2, 2221 (1992)], it is simple, fast, and can describe stop-and-go traffic. Due to its relation to the optimal velocity model by Bando et al. [Phys. Rev. E 51, 1035 (1995)], its instability mechanism is of deterministic nature. The model can be easily calibrated to empirical data and displays the experimental features of traffic data recently reported by Kerner and Rehborn [Phys. Rev. E 53, R1297 (1996)].Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://traffic.comphys.uni-duisburg.de/member/home_schreck.htm

    On-chip CMOS-compatible all-optical integrator

    Get PDF
    One reason for using photonic devices is their speed—much faster than electronic circuits—but there are many challenges in integrating the two technologies. Ferrera et al. construct a CMOS-compatible monolithic optical waveform integrator, a key building block for photonic circuits

    A comparison of two molecular methods for diagnosing leptospirosis from three different sample types in patients presenting with fever in Laos.

    Get PDF
    OBJECTIVES: To compare two molecular assays (rrs quantitative PCR (qPCR) versus a combined 16SrRNA and LipL32 qPCR) on different sample types for diagnosing leptospirosis in febrile patients presenting to Mahosot Hospital, Vientiane, Laos. METHODS: Serum, buffy coat and urine samples were collected on admission, and follow-up serum ∼10 days later. Leptospira spp. culture and microscopic agglutination tests (MAT) were performed as reference standards. Bayesian latent class modelling was performed to estimate sensitivity and specificity of each diagnostic test. RESULTS: In all, 787 patients were included in the analysis: 4/787 (0.5%) were Leptospira culture positive, 30/787 (3.8%) were MAT positive, 76/787 (9.7%) were rrs qPCR positive and 20/787 (2.5%) were 16SrRNA/LipL32 qPCR positive for pathogenic Leptospira spp. in at least one sample. Estimated sensitivity and specificity (with 95% CI) of 16SrRNA/LipL32 qPCR on serum (53.9% (33.3%-81.8%); 99.6% (99.2%-100%)), buffy coat (58.8% (34.4%-90.9%); 99.9% (99.6%-100%)) and urine samples (45.0% (27.0%-66.7%); 99.6% (99.3%-100%)) were comparable with those of rrs qPCR, except specificity of 16SrRNA/LipL32 qPCR on urine samples was significantly higher (99.6% (99.3%-100%) vs. 92.5% (92.3%-92.8%), p <0.001). Sensitivities of MAT (16% (95% CI 6.3%-29.4%)) and culture (25% (95% CI 13.3%-44.4%)) were low. Mean positive Cq values showed that buffy coat samples were more frequently inhibitory to qPCR than either serum or urine (p <0.001). CONCLUSIONS: Serum and urine are better samples for qPCR than buffy coat, and 16SrRNA/LipL32 qPCR performs better than rrs qPCR on urine. Quantitative PCR on admission is a reliable rapid diagnostic tool, performing better than MAT or culture, with significant implications for clinical and epidemiological investigations of this global neglected disease

    The data paper: a mechanism to incentivize data publishing in biodiversity science

    Get PDF
    <p/> <p>Background</p> <p>Free and open access to primary biodiversity data is essential for informed decision-making to achieve conservation of biodiversity and sustainable development. However, primary biodiversity data are neither easily accessible nor discoverable. Among several impediments, one is a lack of incentives to data publishers for publishing of their data resources. One such mechanism currently lacking is recognition through conventional scholarly publication of enriched metadata, which should ensure rapid discovery of 'fit-for-use' biodiversity data resources.</p> <p>Discussion</p> <p>We review the state of the art of data discovery options and the mechanisms in place for incentivizing data publishers efforts towards easy, efficient and enhanced publishing, dissemination, sharing and re-use of biodiversity data. We propose the establishment of the 'biodiversity data paper' as one possible mechanism to offer scholarly recognition for efforts and investment by data publishers in authoring rich metadata and publishing them as citable academic papers. While detailing the benefits to data publishers, we describe the objectives, work flow and outcomes of the pilot project commissioned by the Global Biodiversity Information Facility in collaboration with scholarly publishers and pioneered by Pensoft Publishers through its journals <it>Zookeys</it>, <it>PhytoKeys</it>, <it>MycoKeys</it>, <it>BioRisk</it>, <it>NeoBiota</it>, <it>Nature Conservation</it> and the forthcoming <it>Biodiversity Data Journal</it>. We then debate further enhancements of the data paper beyond the pilot project and attempt to forecast the future uptake of data papers as an incentivization mechanism by the stakeholder communities.</p> <p>Conclusions</p> <p>We believe that in addition to recognition for those involved in the data publishing enterprise, data papers will also expedite publishing of fit-for-use biodiversity data resources. However, uptake and establishment of the data paper as a potential mechanism of scholarly recognition requires a high degree of commitment and investment by the cross-sectional stakeholder communities.</p

    Determining the pneumococcal conjugate vaccine coverage required for indirect protection against vaccine-type pneumococcal carriage in low and middle-income countries: a protocol for a prospective observational study.

    Get PDF
    INTRODUCTION: Pneumococcal conjugate vaccines (PCVs) prevent disease through both direct protection of vaccinated individuals and indirect protection of unvaccinated individuals by reducing nasopharyngeal (NP) carriage and transmission of vaccine-type (VT) pneumococci. While the indirect effects of PCV vaccination are well described, the PCV coverage required to achieve the indirect effects is unknown. We will investigate the relationship between PCV coverage and VT carriage among undervaccinated children using hospital-based NP pneumococcal carriage surveillance at three sites in Asia and the Pacific. METHODS AND ANALYSIS: We are recruiting cases, defined as children aged 2-59 months admitted to participating hospitals with acute respiratory infection in Lao People's Democratic Republic, Mongolia and Papua New Guinea. Thirteen-valent PCV status is obtained from written records. NP swabs are collected according to standard methods, screened using lytA qPCR and serotyped by microarray. Village-level vaccination coverage, for the resident communities of the recruited cases, is determined using administrative data or community survey. Our analysis will investigate the relationship between VT carriage among undervaccinated cases (indirect effects) and vaccine coverage using generalised estimating equations. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the relevant ethics committees at participating sites. The results are intended for publication in open-access peer-reviewed journals and will demonstrate methods suitable for low- and middle-income countries to monitor vaccine impact and inform vaccine policy makers about the PCV coverage required to achieve indirect protection

    Three phylogenetic groups have driven the recent population expansion of Cryptococcus neoformans.

    Get PDF
    Cryptococcus neoformans (C. neoformans var. grubii) is an environmentally acquired pathogen causing 181,000 HIV-associated deaths each year. We sequenced 699 isolates, primarily C. neoformans from HIV-infected patients, from 5 countries in Asia and Africa. The phylogeny of C. neoformans reveals a recent exponential population expansion, consistent with the increase in the number of susceptible hosts. In our study population, this expansion has been driven by three sub-clades of the C. neoformans VNIa lineage; VNIa-4, VNIa-5 and VNIa-93. These three sub-clades account for 91% of clinical isolates sequenced in our study. Combining the genome data with clinical information, we find that the VNIa-93 sub-clade, the most common sub-clade in Uganda and Malawi, was associated with better outcomes than VNIa-4 and VNIa-5, which predominate in Southeast Asia. This study lays the foundation for further work investigating the dominance of VNIa-4, VNIa-5 and VNIa-93 and the association between lineage and clinical phenotype
    • …
    corecore