91 research outputs found

    La salinité de la couche de surface océanique dans l'océan atlantique tropical : variabilités saisonnière à interannuelle

    Get PDF
    Pour étudier la variabilité de la salinité de surface (SSS) dans l'océan Atlantique tropical aux échelles de temps saisonnières à interannuelles, nous avons utilisé des observations in-situ et satellitaires et des résultats de la modélisation océanique. Nous avons montré que la densité et la qualité des observations disponibles permettent de calculer le bilan de sel dans la couche de mélange dans le bassin Atlantique tropical. Ce bilan de sel de la couche de mélange est beaucoup plus sensible aux courants de surface qu'aux flux d'eau douce. Les mécanismes qui modulent la variabilité de la SSS dans l'Atlantique tropical et plus spécifiquement dans la région du Golfe de Guinée ont été déterminés. Il ressort qu'à l'ouest et au nord-est du bassin tropical, la variabilité saisonnière de la SSS est pilotée par l'advection et les flux d'eau douce alors qu'au centre du bassin, c'est principalement les flux d'eau douce qui contrôlent le bilan de sel. Par contre, dans le Golfe de Guinée, les flux d'eau douce ne jouent pas un grand rôle dans le bilan de sel, le cycle saisonnier de la SSS résultant en un équilibre entre les processus verticaux (advection et diffusion) qui augmentent la SSS et l'advection horizontale qui la diminue. La variabilité interannuelle de la SSS étudiée spécifiquement dans le Golfe de Guinée révèle que, dans les régions nord et équatoriale, les changements de SSS sont dus à des changements des précipitations et d'évaporation et les changements dans les processus océaniques (advection et diffusion verticale). Au sud de ces régions, seuls les changements dans les processus océaniques peuvent expliquer les anomalies de SSS. On a observé une salinisation au nord-est du Golfe de Guinée durant la période 2002-2009 qui résulte principalement d'une diminution des pluies dans la région. Enfin, nous avons montré que les fleuves ont pour rôle d'amplifier le signal de la SSS et qu'ils ont un impact sur la profondeur de la couche de mélange, les courants de surface et la température de surface de la mer.The objective of this thesis is to study the variability of the ocean sea surface salinity (SSS) in the tropical Atlantic Ocean, at seasonal and interannual time scales. To achieve this, we used in-situ and satellite data as well as results of ocean models. We have shown that the density and the quality of the available observations allows us to approach the salinity balance in the mixed-layer in the whole tropical Atlantic basin and mixed-layer salinity balance is more sensitive to currents than to freshwater flux. We investigate the main mechanisms which modulate the variability of the SSS in the tropical Atlantic and especially in the Gulf of Guinea.In the western and north-eastern tropical Atlantic Ocean, the seasonal variability of SSS is controlled by advection and freshwater flux whereas, in the central basin, the salinity balance is mostly due to freshwater flux. In the Gulf of Guinea, freshwater flux does not play a key role as in previous regions and the seasonal cycle of SSS is a balance between the vertical processes (advection and diffusion) that increase SSS and the horizontal advection which decrease the SSS. We focus our analysis of SSS interannual variability in the Gulf of Guinea. Results indicate that in the northern region and in the equatorial region, SSS changes are due to changes in precipitations and evaporation and changes in oceanic processes (advection and vertical diffusion) while in the southern Gulf of Guinea only oceanic process changes can explain SSS anomalies. We noted an SSS increase in the northeastern Gulf of Guinea during the period 2002-2009. We argue that it is due mainly to decrease precipitation in this region. Finally, we also showed that the effect of the runoff is to amplify the signal of SSS and can impact the mixed layer depth, the surface currents and the sea surface temperature

    Impact of Stratospheric Geoengineering on Sea Surface Temperature in the Northern Gulf of Guinea

    Get PDF
    Among techniques proposed to limit global warming, there is Stratospheric Aerosol Geoengineering (SAG) which is aiming to increase Earth-atmosphere albedo by injecting sulfur dioxide into the stratosphere in order to reduce the solar radiation that reaches the earth. This study aims to assess the potential impact of SAG on Sea Surface Temperature (SST) in the Northern Gulf of Guinea and its causes using GLENS (Geoengineering Large Ensemble) simulations performed under a high anthropogenic emission scenario (RCP8.5). Here, we focus on two dynamically different regions: Sassandra Upwelling in Côte d’Ivoire (SUC, located east of Cape Palmas) and Takoradi Upwelling in Ghana (TUG, located east of Cape Three Points). Results show that in the SUC region, under climate change, there is an increase in SST (referred to as the current climate) all year long (by 1.52 °C on average) mainly due to an increase in net heat flux (lead by the decrease in longwave radiation) and also in weak vertical mixing (caused by strong stratification which dominates the vertical shear). Under SAG, SST decreases all the seasonal cycle with its maximum in December (−0.4 °C) due to a reduction in the net heat flux (caused by a diminution of solar radiation) and an increase in vertical advection (due to an increase in vertical temperature gradient and vertical velocity). In the TUG region, under climate change, SST warming is a little more intense than in the SUC region and SST changes are driven by an increase in the net heat flux and strong stratification. The cooling of the SST in TUG is similar to the SUC region, but contrary to this region, the cooling under SAG is not only explained by a decrease in the net heat flux but also by the remote forcing of wind changes at the western equatorial Atlantic

    Joint observation-model mixed-layer heat and salt budgets in the eastern tropical Atlantic

    Get PDF
    In this study, we use a joint observation-model approach to investigate the mixed-layer heat and salt annual mean and seasonal budgets in the eastern tropical Atlantic. The regional PREFCLIM observational climatology provides the budget terms with a relatively low spatial and temporal resolution compared to the online NEMO model, and this later is then re-sampled as in PREFCLIM climatology. In addition, advection terms are recomputed offline from the model as PREFCLIM gridded advection computation. In Senegal, Angola and Benguela regions, the seasonal cycle of mixed-layer temperature is mainly governed by surface heat fluxes; however, it is essentially driven by vertical heat diffusion in Equatorial region. The seasonal cycle of mixed-layer salinity is largely controlled by freshwater flux in Senegal and Benguela regions; however, it follows the variability of zonal and meridional salt advection in Equatorial and Angola regions respectively. Our results show that the time-averaged spatial distribution of NEMO offline heat/salt advection terms compares much better to PREFCLIM horizontal advection terms than the online heat/salt advection terms. However, the seasonal cycle of horizontal advection in selected regions shows that NEMO offline terms do not always compare well with PREFCLIM, sometimes less than online terms. Despite this difference, these results suggest the important role of small scale variability in mixed-layer heat and salt budgets.</p

    Impact of Stratospheric Aerosol Geoengineering on Meteorological Droughts in West Africa

    Get PDF
    This study assesses changes in meteorological droughts in West Africa under a high greenhouse gas scenario, i.e., a representative concentration pathway 8.5 (RCP8.5), and under a scenario of stratospheric aerosol geoengineering (SAG) deployment. Using simulations from the Geoengineering Large Ensemble (GLENS) project that employed stratospheric sulfate aerosols injection to keep global mean surface temperature, as well as the interhemispheric and equator-to-pole temperature gradients at the 2020 level (present-day climate), we investigated the impact of SAG on meteorological droughts in West Africa. Analysis of the meteorological drought characteristics (number of drought events, drought duration, maximum length of drought events, severity of the greatest drought events and intensity of the greatest drought event) revealed that over the period from 2030–2049 and under GLENS simulations, these drought characteristics decrease in most regions in comparison to the RCP8.5 scenarios. On the contrary, over the period from 2070–2089 and under GLENS simulations, these drought characteristics increase in most regions compared to the results from the RCP8.5 scenarios. Under GLENS, the increase in drought characteristics is due to a decrease in precipitation. The decrease in precipitation is largely driven by weakened monsoon circulation due to the reduce of land–sea thermal contrast in the lower troposphere

    Impact of Stratospheric Aerosol Geoengineering on Extreme Precipitation and Temperature indices in West Africa using GLENS simulations

    Get PDF
    This study assesses changes in extremes precipitation and temperature in West Africa under a high greenhouse gas scenario, i.e. a representative concentration pathway 8.5 (RCP8.5), and under a scenario of stratospheric aerosol geoengineering (SAG) deployment using the NCAR Community Earth System Model version 1 (CESM1-WACCM). We use results from the Geoengineering Large Ensemble (GLENS) simulations, where SAG is deployed to keep global surface temperatures at present day values. This impact study evaluates changes in some of the extreme climate indices recommended by the Expert Team Monitoring on Climate Change Detection and Indices (ETCCDI). The results indicate that SAG would effectively keep surface temperatures at present day-conditions across a range of indices compared to the control period, including Cold days, Cold nights and Cold Spell Duration Indicator which show no significant increase compared to the control period. Regarding the extremes precipitation, GLENS shows mostly a statistically significant increase in annual precipitation and statistically significant decrease in the number of heavy and very heavy precipitation events relative to the control period in some regions of Gulf of Guinea. In the Sahel, we notice a mix of statistically significant increase and decrease in Max 1-day and Max 5-days precipitation amount relative to the control period at the end of the 21st century when large amounts of SAG has been applied. The changes in extreme precipitation indices are linked to changes in Atlantic Multidecadal Oscillation (AMO), NINO3.4 and Indian Ocean Dipole (IOD) and these changes in extreme precipitation are driven by change in near surface specific humidty and atmospheric circulation

    Altered Rest-Activity Patterns Evolve via Circadian Independent Mechanisms in Cave Adapted Balitorid Loaches

    Get PDF
    Circadian rhythms and rest homeostasis are independent processes, each regulating important components of rest-activity patterns. Evolutionarily, the two are distinct from one another; total rest time is maintained unaffected even when circadian pacemaker cells are ablated. Throughout the animal kingdom, there exists a huge variation in rest-activity patterns, yet it is unclear how these behaviors have evolved. Here we show that four species of balitorid cavefish have greatly reduced rest times in comparison to rest times of their surface relatives. All four cave species retained biological rhythmicity, and in three of the four there is a pronounced 24-hour rhythm; in the fourth there is an altered rhythmicity of 38–40 hours. Thus, consistent changes in total rest have evolved in these species independent of circadian rhythmicity. Taken together, our data suggest that consistent reduction in total rest times were accomplished evolutionarily through alterations in rest homeostasis

    A Conserved Behavioral State Barrier Impedes Transitions between Anesthetic-Induced Unconsciousness and Wakefulness: Evidence for Neural Inertia

    Get PDF
    One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS). If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable. By generating anesthetic dose-response data in both insects and mammals, we demonstrate that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead they exhibit hysteresis that is not fully explained by pharmacokinetics as previously thought. Single gene mutations that affect sleep-wake states are shown to collapse or widen anesthetic hysteresis without obvious confounding effects on volatile anesthetic uptake, distribution, or metabolism. We propose a fundamental and biologically conserved concept of neural inertia, a tendency of the CNS to resist behavioral state transitions between conscious and unconscious states. We demonstrate that such a barrier separates wakeful and anesthetized states for multiple anesthetics in both flies and mice, and argue that it contributes to the hysteresis observed when the brain transitions between conscious and unconscious states

    Transcriptional Activity and Nuclear Localization of Cabut, the Drosophila Ortholog of Vertebrate TGF-β-Inducible Early-Response Gene (TIEG) Proteins

    Get PDF
    BackgroundCabut (Cbt) is a C2H2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs), which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein.Methodology/Principal FindingsTo determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS) previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2.Conclusions/SignificanceOur results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the existence of similarities and differences in both aspects of Cbt function between the insect and the vertebrate TIEG proteins

    Re-Patterning Sleep Architecture in Drosophila through Gustatory Perception and Nutritional Quality

    Get PDF
    Organisms perceive changes in their dietary environment and enact a suite of behavioral and metabolic adaptations that can impact motivational behavior, disease resistance, and longevity. However, the precise nature and mechanism of these dietary responses is not known. We have uncovered a novel link between dietary factors and sleep behavior in Drosophila melanogaster. Dietary sugar rapidly altered sleep behavior by modulating the number of sleep episodes during both the light and dark phase of the circadian period, independent of an intact circadian rhythm and without affecting total sleep, latency to sleep, or waking activity. The effect of sugar on sleep episode number was consistent with a change in arousal threshold for waking. Dietary protein had no significant effect on sleep or wakefulness. Gustatory perception of sugar was necessary and sufficient to increase the number of sleep episodes, and this effect was blocked by activation of bitter-sensing neurons. Further addition of sugar to the diet blocked the effects of sweet gustatory perception through a gustatory-independent mechanism. However, gustatory perception was not required for diet-induced fat accumulation, indicating that sleep and energy storage are mechanistically separable. We propose a two-component model where gustatory and metabolic cues interact to regulate sleep architecture in response to the quantity of sugar available from dietary sources. Reduced arousal threshold in response to low dietary availability may have evolved to provide increased responsiveness to cues associated with alternative nutrient-dense feeding sites. These results provide evidence that gustatory perception can alter arousal thresholds for sleep behavior in response to dietary cues and provide a mechanism by which organisms tune their behavior and physiology to environmental cues
    corecore