397 research outputs found

    Herschel-ATLAS/GAMA: A difference between star formation rates in strong-line and weak-line radio galaxies

    Get PDF
    We have constructed a sample of radio-loud objects with optical spectroscopy from the Galaxy and Mass Assembly (GAMA) project over the Herschel Astrophysical Terahertz Large Area Survey (Herschel-ATLAS) Phase 1 fields. Classifying the radio sources in terms of their optical spectra, we find that strong-emission-line sources ('high-excitation radio galaxies') have, on average, a factor of ~4 higher 250-μm Herschel luminosity than weak-line ('lowexcitation') radio galaxies and are also more luminous than magnitude-matched radio-quiet galaxies at the same redshift. Using all five H-ATLAS bands, we show that this difference in luminosity between the emission-line classes arises mostly from a difference in the average dust temperature; strong-emission-line sources tend to have comparable dust masses to, but higher dust temperatures than, radio galaxies with weak emission lines. We interpret this as showing that radio galaxies with strong nuclear emission lines are much more likely to be associated with star formation in their host galaxy, although there is certainly not a one-to-one relationship between star formation and strong-line active galactic nuclei (AGN) activity. The strong-line sources are estimated to have star formation rates at least a factor of 3-4 higher than those in the weak-line objects. Our conclusion is consistent with earlier work, generally carried out using much smaller samples, and reinforces the general picture of high-excitation radio galaxies as being located in lower-mass, less evolved host galaxies than their low-excitation counterparts.Peer reviewe

    Management of orthodontic emergencies in primary care – self-reported confidence of general dental practitioners

    Get PDF
    Objective: To determine general dental practitioners’ (GDPs) confidence in managing orthodontic emergencies. Design: Cross-sectional study. Setting: Primary dental care. Subjects and methods: An online survey was distributed to dentists practicing in Wales. The survey collected basic demographic information and included descriptions of ten common orthodontic emergency scenarios. Main outcome measure Respondents’ self-reported confidence in managing the orthodontic emergency scenarios on a 5‑point Likert scale. Differences between the Likert responses and the demographic variables were investigated using chi-squared tests. Results: The median number of orthodontic emergencies encountered by respondents over the previous six months was 1. Overall, the self-reported confidence of respondents was high with 7 of the 10 scenarios presented scoring a median of 4 indicating that GDPs were ‘confident’ in their management. Statistical analysis revealed that GDPs who saw more orthodontic emergencies in the previous six months were more confident when managing the presented scenarios. Other variables such as age, gender, geographic location of practice and number of years practising dentistry were not associated with self reported confidence. Conclusions: Despite GDPs encountering very few orthodontic emergencies in primary care, they appear to be confident in dealing with commonly arising orthodontic emergency situations

    Predicting the Impact of Climate Change on Threatened Species in UK Waters

    Get PDF
    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)

    A multiwavelength exploration of the [C II]/IR ratio in H-ATLAS/GAMA galaxies out to z = 0.2

    Get PDF
    We explore the behaviour of [C ii] λ157.74 μm forbidden fine-structure line observed in a sample of 28 galaxies selected from ∼ 50 deg2 of the Herschel-Astrophysical Terahertz Large Area Survey survey. The sample is restricted to galaxies with flux densities higher than S160 μm > 150 mJy and optical spectra from the Galaxy and Mass Assembly survey at 0.02 2.5 × 10−3 with respect to those showing lower ratios. In particular, those with high ratios tend to have: (1) LIR <1011 L⊙; (2) cold dust temperatures, Td < 30 K; (3) disc-like morphologies in r-band images; (4) a Wide-field Infrared Survey Explorer colour 0.5 ≲ S12 μm/S22 μm ≲ 1.0; (5) low surface brightness ΣIR ≈ 108–9 L⊙ kpc−2, (6) and specific star formation rates of sSFR ≈0.05–3 Gyr−1. We suggest that the strength of the far-UV radiation fields (〈GO〉) is main parameter responsible for controlling the [C ii]/IR ratio. It is possible that relatively high 〈GO〉 creates a positively charged dust grain distribution, impeding an efficient photoelectric extraction of electrons from these grains to then collisionally excite carbon atoms. Within the brighter IR population, 11 < log(L IR/L⊙) < 12, the low [C ii]/IR ratio is unlikely to be modified by [C ii] self-absorption or controlled by the presence of a moderately luminous AGN (identified via the BPT diagram)

    Galaxy And Mass Assembly (GAMA): the input catalogue and star-galaxy separation

    Get PDF
    We describe the spectroscopic target selection for the Galaxy And Mass Assembly (GAMA) survey. The input catalogue is drawn from the Sloan Digital Sky Survey (SDSS) and UKIRT Infrared Deep Sky Survey (UKIDSS). The initial aim is to measure redshifts for galaxies in three 4°× 12° regions at 9, 12 and 14.5 h, on the celestial equator, with magnitude selections r 0.2. From 2 yr out of a 3-yr AAOmega program on the Anglo-Australian Telescope, we have obtained 79 599 unique galaxy redshifts. Previously known redshifts in the GAMA region bring the total up to 98 497. The median galaxy redshift is 0.2 with 99 per cent at z < 0.5. We present some of the global statistical properties of the survey, including K-band galaxy counts, colour-redshift relations and preliminary n(z

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    BLAST: A Far-Infrared Measurement of the History of Star Formation

    Full text link
    We directly measure redshift evolution in the mean physical properties (far-infrared luminosity, temperature, and mass) of the galaxies that produce the cosmic infrared background (CIB), using measurements from the Balloon-borne Large Aperture Sub-millimeter Telescope (BLAST), and Spitzer which constrain the CIB emission peak. This sample is known to produce a surface brightness in the BLAST bands consistent with the full CIB, and photometric redshifts are identified for all of the objects. We find that most of the 70 micron background is generated at z <~ 1 and the 500 micron background generated at z >~ 1. A significant growth is observed in the mean luminosity from ~ 10^9 - 10^12 L_sun, and in the mean temperature by 10 K, from redshifts 0< z < 3. However, there is only weak positive evolution in the comoving dust mass in these galaxies across the same redshift range. We also measure the evolution of the far-infrared luminosity density, and the star-formation rate history for these objects, finding good agreement with other infrared studies up to z ~1, exceeding the contribution attributed to optically-selected galaxies.Comment: Accepted for publication in the Astrophysical Journal. Maps available at http://blastexperiment.info
    • …
    corecore