55 research outputs found

    Generation of NSE-MerCreMer Transgenic Mice with Tamoxifen Inducible Cre Activity in Neurons

    Get PDF
    To establish a genetic tool for conditional deletion or expression of gene in neurons in a temporally controlled manner, we generated a transgenic mouse (NSE-MerCreMer), which expressed a tamoxifen inducible type of Cre recombinase specifically in neurons. The tamoxifen inducible Cre recombinase (MerCreMer) is a fusion protein containing Cre recombinase with two modified estrogen receptor ligand binding domains at both ends, and is driven by the neural-specific rat neural specific enolase (NSE) promoter. A total of two transgenic lines were established, and expression of MerCreMer in neurons of the central and enteric nervous systems was confirmed. Transcript of MerCreMer was detected in several non-neural tissues such as heart, liver, and kidney in these lines. In the background of the Cre reporter mouse strain Rosa26R, Cre recombinase activity was inducible in neurons of adult NSE-MerCreMer mice treated with tamoxifen by intragastric gavage, but not in those fed with corn oil only. We conclude that NSE-MerCreMer lines will be useful for studying gene functions in neurons for the conditions that Cre-mediated recombination resulting in embryonic lethality, which precludes investigation of gene functions in neurons through later stages of development and in adult

    Prenatal Detection of Aneuploidy and Imbalanced Chromosomal Arrangements by Massively Parallel Sequencing

    Get PDF
    Fetal chromosomal abnormalities are the most common reasons for invasive prenatal testing. Currently, G-band karyotyping and several molecular genetic methods have been established for diagnosis of chromosomal abnormalities. Although these testing methods are highly reliable, the major limitation remains restricted resolutions or can only achieve limited coverage on the human genome at one time. The massively parallel sequencing (MPS) technologies which can reach single base pair resolution allows detection of genome-wide intragenic deletions and duplication challenging karyotyping and microarrays as the tool for prenatal diagnosis. Here we reported a novel and robust MPS-based method to detect aneuploidy and imbalanced chromosomal arrangements in amniotic fluid (AF) samples. We sequenced 62 AF samples on Illumina GAIIx platform and with averagely 0.01× whole genome sequencing data we detected 13 samples with numerical chromosomal abnormalities by z-test. With up to 2× whole genome sequencing data we were able to detect microdeletion/microduplication (ranged from 1.4 Mb to 37.3 Mb of 5 samples from chorionic villus sampling (CVS) using SeqSeq algorithm. Our work demonstrated MPS is a robust and accurate approach to detect aneuploidy and imbalanced chromosomal arrangements in prenatal samples

    RNA-Seq Analyses Generate Comprehensive Transcriptomic Landscape and Reveal Complex Transcript Patterns in Hepatocellular Carcinoma

    Get PDF
    RNA-seq is a powerful tool for comprehensive characterization of whole transcriptome at both gene and exon levels and with a unique ability of identifying novel splicing variants. To date, RNA-seq analysis of HBV-related hepatocellular carcinoma (HCC) has not been reported. In this study, we performed transcriptome analyses for 10 matched pairs of cancer and non-cancerous tissues from HCC patients on Solexa/Illumina GAII platform. On average, about 21.6 million sequencing reads and 10.6 million aligned reads were obtained for samples sequenced on each lane, which was able to identify >50% of all the annotated genes for each sample. Furthermore, we identified 1,378 significantly differently expressed genes (DEGs) and 24, 338 differentially expressed exons (DEEs). Comprehensive function analyses indicated that cell growth-related, metabolism-related and immune-related pathways were most significantly enriched by DEGs, pointing to a complex mechanism for HCC carcinogenesis. Positional gene enrichment analysis showed that DEGs were most significantly enriched at chromosome 8q21.3–24.3. The most interesting findings were from the analysis at exon levels where we characterized three major patterns of expression changes between gene and exon levels, implying a much complex landscape of transcript-specific differential expressions in HCC. Finally, we identified a novel highly up-regulated exon-exon junction in ATAD2 gene in HCC tissues. Overall, to our best knowledge, our study represents the most comprehensive characterization of HBV-related HCC transcriptome including exon level expression changes and novel splicing variants, which illustrated the power of RNA-seq and provided important clues for understanding the molecular mechanisms of HCC pathogenesis at system-wide levels

    Fit between humanitarian professionals and project requirements: hybrid group decision procedure to reduce uncertainty in decision-making

    Get PDF
    Choosing the right professional that has to meet indeterminate requirements is a critical aspect in humanitarian development and implementation projects. This paper proposes a hybrid evaluation methodology for some non-governmental organizations enabling them to select the most competent expert who can properly and adequately develop and implement humanitarian projects. This methodology accommodates various stakeholders’ perspectives in satisfying the unique requirements of humanitarian projects that are capable of handling a range of uncertain issues from both stakeholders and project requirements. The criteria weights are calculated using a two-step multi-criteria decision-making method: (1) Fuzzy Analytical Hierarchy Process for the evaluation of the decision maker weights coupled with (2) Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to rank the alternatives which provide the ability to take into account both quantitative and qualitative evaluations. Sensitivity analysis have been developed and discussed by means of a real case of expert selection problem for a non-profit organisation. The results show that the approach allows a decrease in the uncertainty associated with decision-making, which proves that the approach provides robust solutions in terms of sensitivity analysis

    Consensus Conference on Clinical Management of pediatric Atopic Dermatitis

    Full text link

    miR-BART5 is an anti-apoptotic miRNA encoded by EBV and inhibits PUMA to promote host cell survival

    No full text
    Epstein-Barr virus (EBV) is a herpesvirus associated with nasopharyngeal carcinoma (NPC) and other types of epithelial and lymphoid malignancies. EBV is the first human virus found to express microRNAs (miRNAs), but the functions of these viral miRNAs are largely unknown. Here, we identified and characterized a cellular target of an EBV miRNA known as miR-BART5, which is conserved with rhesus lymphocryptovirus miR-rL1-8 and abundantly expressed in NPC cells. By in silico analysis and functional screening with luciferase reporter assays, we showed that miR-BART5 targets the 3-untranslated region of a cellular mRNA transcript encoding p53 upregulated modulator of apoptosis (PUMA), a mediator of p53-dependent and –independent apoptosis. The target site of miR-BART5 was identified and characterized. Regulation of the endogenous PUMA expression was verified by overexpressing miR-BART5. In addition, a synthetic anti-miR-BART5 oligonucleotide inhibitor was used to confirm that reduction of endogenous miR-BART5 in NPC cells led to alteration in PUMA expression. Consistent with a role in the development of NPC, PUMA was found to be significantly underexpressed in about 60% of human NPC tissues constitutively harboring EBV. More importantly, miR-BART5-expressing NPC cells were less sensitive to proapoptotic agents adriamycin and etoposide. In addition, apoptosis can be induced in these cells by inhibiting miR-BART5 activity. Taken together, our findings suggest a model for viral promotion of tumor cell survival in which EBV encodes an miRNA to repress the expression of PUNA and consequently facilitate the establishment of stable latent infection and the development of epithelial carcinoma

    miR-BART5 is an anti-apoptotic miRNA encoded by EBV and inhibits PUMA to promote host cell survival

    No full text
    Conference Theme: Frontier in Life Science

    Epigenetic inactivation of mir-34b/c in addition to mir-34a and DAPK1 in chronic lymphocytic leukemia

    Get PDF
    BACKGROUND: TP53 mutation/deletion is uncommon in chronic lymphocytic leukemia (CLL). We postulated that components of TP53-centered tumor suppressor network, miR-34b/c, in addition to DAPK1 and miR-34a might be inactivated by DNA hypermethylation. Moreover, we tested if miR-34b/c methylation might correlate with miR-203 or miR-124-1 methylation in CLL. METHODS: miR-34b/c, miR-34a and DAPK1 methylation was studied in 11 normal controls, 7 CLL cell lines, and 78 diagnostic CLL samples by methylation-specific polymerase chain reaction. MEC-1 cells were treated with 5-Aza-2'-deoxycytidine for reversal of methylation-associated miRNA silencing. Tumor suppressor properties of miR-34b were demonstrated by over-expression of precursor miR-34b in MEC-1 cells. RESULTS: miR-34b/c promoter was unmethylated in normal controls, but completely methylated in 4 CLL cell lines. miR-34b/c expression inversely correlated with miR-34b/c methylation. Different MSP statuses of miR-34b/c, including complete methylation and complete unmethylation, were verified by quantitative bisulfite pyrosequencing. 5-Aza-2'-deoxycytidine treatment resulted in promoter demethylation and miR-34b re-expression in MEC1 cells. Moreover, over-expression of miR-34b resulted in inhibition of cellular proliferation and increased cell death. In primary CLL samples, miR-34a, miR-34b/c and DAPK1 methylation was detected in 2.6%, 17.9% and 34.6% of patients at diagnosis respectively. Furthermore, 39.7%, 3.8% and 2.6% patients had methylation of one, two or all three genes respectively. Overall, 46.2% patients had methylation of at least one of these three genes. Besides, miR-34b/c methylation was associated with methylation of miR-34a (P = 0.03) and miR-203 (P = 0.012) in CLL. CONCLUSIONS: Taken together, miR-34b/c is a tumor suppressor miRNA frequently methylated, and hence silenced in CLL. Together with DAPK1 methylation, miR-34b/c methylation is implicated in the disruption of the TP53-centered tumor suppressor network. Moreover, the association of miRNA methylation warrants further study
    • …
    corecore