1,961 research outputs found

    Influence of dynamic stretching on ankle joint stiffness, vertical stiffness and running economy during treadmill running

    Get PDF
    Data availability statement: The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.Copyright Β© 2022 Pamboris, Noorkoiv, Baltzopoulos, Powell, Howes and Mohagheghi. The purpose of the present study was to investigate whether and how dynamic stretching of the plantarflexors may influence running economy. A crossover design with a minimum of 48Β h between experimental (dynamic stretching) and control conditions was used. Twelve recreational runners performed a step-wise incremental protocol to the limit of tolerance on a motorised instrumented treadmill. The initial speed was 2.3Β m/s, followed by increments of 0.2Β m/s every 3Β min. Dynamic joint stiffness, vertical stiffness and running kinematics during the initial stage of the protocol were calculated. Running economy was evaluated using online gas-analysis. For each participant, the minimum number of stages completed before peak O2 uptake (VΜ‡O2peak) common to the two testing conditions was used to calculate the gradient of a linear regression line between VΜ‡O2 (y-axis) and speed (x-axis). The number of stages, which ranged between 4 and 8, was used to construct individual subject regression equations. Non-clinical forms of magnitude-based decision method were used to assess outcomes. The dynamic stretching protocol resulted in a possible decrease in dynamic ankle joint stiffness (βˆ’10.7%; 90% confidence limits Β±16.1%), a possible decrease in vertical stiffness (βˆ’2.3%, Β±4.3%), a possibly beneficial effect on running economy (βˆ’4.0%, Β±8.3%), and very likely decrease in gastrocnemius medialis muscle activation (βˆ’27.1%, Β±39.2%). The results indicate that dynamic stretching improves running economy, possibly via decreases in dynamic joint and vertical stiffness and muscle activation. Together, these results imply that dynamic stretching should be recommended as part of the warm-up for running training in recreational athletes examined in this study

    TGF-beta 1 induces human alveolar epithelial to mesenchymal cell transition (EMT)

    Get PDF
    Background: Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-Ξ²1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-Ξ²1-mediated EMT. Methods: A549 cells were examined for evidence of EMT after treatment with TGF-Ξ²1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-Ξ²1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-Ξ²1-mediated EMT was investigated using siRNA. Results: The data showed that TGF-Ξ²1, but not TNF-Ξ± or IL-1Ξ², induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-Ξ²1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes. Conclusion: Our study shows that TGF-Ξ²1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon

    MicroRNA-184 Is Induced By Store-Operated Calcium Entry And Regulates Early Keratinocyte Differentiation

    Get PDF
    Extracellular calcium (Ca2+) and store‐operated Ca2+ entry (SOCE) govern homoeostasis in the mammalian epidermis. Multiple microRNAs (miRNA) also regulate epidermal differentiation, and raised external Ca2+ modulates the expression of several such miRNAs in keratinocytes. However, little is known about the regulation of miR‐184 in keratinocytes or the roles of miR‐184 in keratinocyte differentiation. Here we report that exogenous Ca2+ stimulates miR‐184 expression in primary epidermal keratinocytes and that this occurs in a SOCE‐dependent manner. Levels of miR‐184 were raised by about 30‐fold after exposure to 1.5 mM Ca2+ for 5 days. In contrast, neither phorbol ester nor 1,25‐dihydroxyvitamin D3 had any effect on miR‐184 levels. Pharmacologic and genetic inhibitors of SOCE abrogated Ca2+‐dependent miR‐184 induction by 70% or more. Ectopic miR‐184 inhibited keratinocyte proliferation and led to a fourfold increase in the expression of involucrin, a marker of early keratinocyte differentiation. Exogenous miR‐184 also triggered a threefold rise in levels of cyclin E and doubled the levels of Ξ³H2AX, a marker of DNA double‐strand breaks. The p21 cyclin‐dependent kinase inhibitor, which supports keratinocyte growth arrest, was also induced by miR‐184. Together our findings point to an SOCE:miR‐184 pathway that targets a cyclin E/DNA damage regulatory node to facilitate keratinocyte differentiation

    Influence of dynamic stretching on ankle joint stiffness, vertical stiffness and running economy during treadmill running

    Get PDF
    The purpose of the present study was to investigate whether and how dynamic stretching of the plantarflexors may influence running economy. A crossover design with a minimum of 48Β h between experimental (dynamic stretching) and control conditions was used. Twelve recreational runners performed a step-wise incremental protocol to the limit of tolerance on a motorised instrumented treadmill. The initial speed was 2.3Β m/s, followed by increments of 0.2Β m/s every 3Β min. Dynamic joint stiffness, vertical stiffness and running kinematics during the initial stage of the protocol were calculated. Running economy was evaluated using online gas-analysis. For each participant, the minimum number of stages completed before peak O2 uptake (VΜ‡O2peak) common to the two testing conditions was used to calculate the gradient of a linear regression line between VΜ‡O2 (y-axis) and speed (x-axis). The number of stages, which ranged between 4 and 8, was used to construct individual subject regression equations. Non-clinical forms of magnitude-based decision method were used to assess outcomes. The dynamic stretching protocol resulted in a possible decrease in dynamic ankle joint stiffness (βˆ’10.7%; 90% confidence limits Β±16.1%), a possible decrease in vertical stiffness (βˆ’2.3%, Β±4.3%), a possibly beneficial effect on running economy (βˆ’4.0%, Β±8.3%), and very likely decrease in gastrocnemius medialis muscle activation (βˆ’27.1%, Β±39.2%). The results indicate that dynamic stretching improves running economy, possibly via decreases in dynamic joint and vertical stiffness and muscle activation. Together, these results imply that dynamic stretching should be recommended as part of the warm-up for running training in recreational athletes examined in this study

    Tactile Interactions with a Humanoid Robot : Novel Play Scenario Implementations with Children with Autism

    Get PDF
    Acknowledgments: This work has been partially supported by the European Commission under contract number FP7-231500-ROBOSKIN. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.The work presented in this paper was part of our investigation in the ROBOSKIN project. The project has developed new robot capabilities based on the tactile feedback provided by novel robotic skin, with the aim to provide cognitive mechanisms to improve human-robot interaction capabilities. This article presents two novel tactile play scenarios developed for robot-assisted play for children with autism. The play scenarios were developed against specific educational and therapeutic objectives that were discussed with teachers and therapists. These objectives were classified with reference to the ICF-CY, the International Classification of Functioning – version for Children and Youth. The article presents a detailed description of the play scenarios, and case study examples of their implementation in HRI studies with children with autism and the humanoid robot KASPAR.Peer reviewedFinal Published versio

    Extracts of Feijoa Inhibit Toll-Like Receptor 2 Signaling and Activate Autophagy Implicating a Role in Dietary Control of IBD

    Get PDF
    Inflammatory bowel disease (IBD) is a heterogeneous chronic inflammatory disease affecting the gut with limited treatment success for its sufferers. This suggests the need for better understanding of the different subtypes of the disease as well as nutritional interventions to compliment current treatments. In this study we assess the ability of a hydrophilic feijoa fraction (F3) to modulate autophagy a process known to regulate inflammation, via TLR2 using IBD cell lines

    Nonlinear Localization in Metamaterials

    Full text link
    Metamaterials, i.e., artificially structured ("synthetic") media comprising weakly coupled discrete elements, exhibit extraordinary properties and they hold a great promise for novel applications including super-resolution imaging, cloaking, hyperlensing, and optical transformation. Nonlinearity adds a new degree of freedom for metamaterial design that allows for tuneability and multistability, properties that may offer altogether new functionalities and electromagnetic characteristics. The combination of discreteness and nonlinearity may lead to intrinsic localization of the type of discrete breather in metallic, SQUID-based, and PTβˆ’{\cal PT}-symmetric metamaterials. We review recent results demonstrating the generic appearance of breather excitations in these systems resulting from power-balance between intrinsic losses and input power, either by proper initialization or by purely dynamical procedures. Breather properties peculiar to each particular system are identified and discussed. Recent progress in the fabrication of low-loss, active and superconducting metamaterials, makes the experimental observation of breathers in principle possible with the proposed dynamical procedures.Comment: 19 pages, 14 figures, Invited (Review) Chapte

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to β€˜biological process’ (n = 68), β€˜cellular component’ (n = 50), or β€˜molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism

    Genomic analysis of the function of the transcription factor gata3 during development of the Mammalian inner ear

    Get PDF
    We have studied the function of the zinc finger transcription factor gata3 in auditory system development by analysing temporal profiles of gene expression during differentiation of conditionally immortal cell lines derived to model specific auditory cell types and developmental stages. We tested and applied a novel probabilistic method called the gamma Model for Oligonucleotide Signals to analyse hybridization signals from Affymetrix oligonucleotide arrays. Expression levels estimated by this method correlated closely (p<0.0001) across a 10-fold range with those measured by quantitative RT-PCR for a sample of 61 different genes. In an unbiased list of 26 genes whose temporal profiles clustered most closely with that of gata3 in all cell lines, 10 were linked to Insulin-like Growth Factor signalling, including the serine/threonine kinase Akt/PKB. Knock-down of gata3 in vitro was associated with a decrease in expression of genes linked to IGF-signalling, including IGF1, IGF2 and several IGF-binding proteins. It also led to a small decrease in protein levels of the serine-threonine kinase Akt2/PKB beta, a dramatic increase in Akt1/PKB alpha protein and relocation of Akt1/PKB alpha from the nucleus to the cytoplasm. The cyclin-dependent kinase inhibitor p27(kip1), a known target of PKB/Akt, simultaneously decreased. In heterozygous gata3 null mice the expression of gata3 correlated with high levels of activated Akt/PKB. This functional relationship could explain the diverse function of gata3 during development, the hearing loss associated with gata3 heterozygous null mice and the broader symptoms of human patients with Hearing-Deafness-Renal anomaly syndrome
    • …
    corecore