49 research outputs found

    Tooth fractures in the Krapina Neandertals. Journal of Human Evolution

    No full text
    Dental fractures can be produced during life or post-mortem. Ante-mortem chipping may be indicative of different uses of the dentition in masticatory and non-masticatory activities related to variable diets and behaviors. The Krapina collection (Croatia, 130,000 years BP), thanks to the large number of teeth (293 teeth and tooth fragments) within it, offers an excellent sample to investigate dental fractures systematically. Recorded were the distribution, position and severity of the ante-mortem fractures according to standardized methods. High frequencies of teeth with chipping in both Krapina adults and subadults suggest that the permanent and deciduous dentition were heavily subjected to mechanical stress. This is particularly evident when the frequencies of chipping are compared with those in modern humans (Upper Paleolithic and historic samples) that we analysed using the same methods. The distribution of chipping in the Krapina sample (anterior teeth are more affected) and its position (labial) suggest a systematic use of the anterior teeth for non-masticatory tasks

    Allez Neanderthal

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62987/1/289823a0.pd

    Common variants in left/right asymmetry genes and pathways are associated with relative hand skill

    Get PDF
    This work was supported by the University of St Andrews, the UK Medical Research Council (grant number G0800523/86473 to SP), the Max Plank Society, and the the EU (Neurodys, 018696). Genotyping at the Wellcome Trust Centre for Human Genetics was supported by the Wellcome Trust (090532/Z/ 09/Z) and a Medical Research Council Hub Grant (G0900747 91070). Core support for ALSPAC was provided by the UK Medical Research Council and the Wellcome Trust (092731) and the University of Bristol. SP is a Royal Society University Research Fellow. CW is also funded by the UK Medical Research Funding and the EU (GENCODYS, 241995). APMor was supported by the Wellcome Trust (grant numbers WT075491, WT090532, and WT098017). WMB is the recipient of a Nuffield Department of Medicine Prize Studentship. JPK is funded by a Wellcome Trust PhD studentship (WT083431MA).Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10−9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.Publisher PDFPeer reviewe
    corecore