101 research outputs found
Survivors of intensive care with type 2 diabetes and the effect of shared care follow-up clinics: study protocol for the SWEET-AS randomised controlled feasibility study
Published online: 13 October 2016Background: Many patients who survive the intensive care unit (ICU) experience long-term complications such as peripheral neuropathy and nephropathy which represent a major source of morbidity and affect quality of life adversely. Similar pathophysiological processes occur frequently in ambulant patients with diabetes mellitus who have never been critically ill. Some 25 % of all adult ICU patients have diabetes, and it is plausible that ICU survivors with co-existing diabetes are at heightened risk of sequelae from their critical illness. ICU follow-up clinics are being progressively implemented based on the concept that interventions provided in these clinics will alleviate the burdens of survivorship. However, there is only limited information about their outcomes. The few existing studies have utilised the expertise of healthcare professionals primarily trained in intensive care and evaluated heterogenous cohorts. A shared care model with an intensivist- and diabetologist-led clinic for ICU survivors with type 2 diabetes represents a novel targeted approach that has not been evaluated previously. Prior to undertaking any definitive study, it is essential to establish the feasibility of this intervention. Methods: This will be a prospective, randomised, parallel, open-label feasibility study. Eligible patients will be approached before ICU discharge and randomised to the intervention (attending a shared care follow-up clinic 1 month after hospital discharge) or standard care. At each clinic visit, patients will be assessed independently by both an intensivist and a diabetologist who will provide screening and targeted interventions. Six months after discharge, all patients will be assessed by blinded assessors for glycated haemoglobin, peripheral neuropathy, cardiovascular autonomic neuropathy, nephropathy, quality of life, frailty, employment and healthcare utilisation. The primary outcome of this study will be the recruitment and retention at 6 months of all eligible patients. Discussion: This study will provide preliminary data about the potential effects of critical illness on chronic glucose metabolism, the prevalence of microvascular complications, and the impact on healthcare utilisation and quality of life in intensive care survivors with type 2 diabetes. If feasibility is established and point estimates are indicative of benefit, funding will be sought for a larger, multi-centre study. Trial registration: ANZCTR ACTRN12616000206426Yasmine Ali Abdelhamid, Liza Phillips, Michael Horowitz and Adam Dean
Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men
BACKGROUND: We aimed to determine the effect of resistance exercise intensity (%1 repetition maximum-1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Fifteen men (21+/-1 years; BMI=24.1+/-0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P=0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P=0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P=0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. CONCLUSIONS/SIGNIFICANCE: These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes
Metabolic changes induced by pre-administration of L-alanyl-glutamine and Omega-3 in Wistar rats subjected to sepsis
Long-Term Persistance of the Pathophysiologic Response to Severe Burn Injury
Main contributors to adverse outcomes in severely burned pediatric patients are profound and complex metabolic changes in response to the initial injury. It is currently unknown how long these conditions persist beyond the acute phase post-injury. The aim of the present study was to examine the persistence of abnormalities of various clinical parameters commonly utilized to assess the degree hypermetabolic and inflammatory alterations in severely burned children for up to three years post-burn to identify patient specific therapeutic needs and interventions.
Nine-hundred seventy-seven severely burned pediatric patients with burns over 30% of the total body surface admitted to our institution between 1998 and 2008 were enrolled in this study and compared to a cohort non-burned, non-injured children. Demographics and clinical outcomes, hypermetabolism, body composition, organ function, inflammatory and acute phase responses were determined at admission and subsequent regular intervals for up to 36 months post-burn. Statistical analysis was performed using One-way ANOVA, Student's t-test with Bonferroni correction where appropriate with significance accepted at p<0.05. Resting energy expenditure, body composition, metabolic markers, cardiac and organ function clearly demonstrated that burn caused profound alterations for up to three years post-burn demonstrating marked and prolonged hypermetabolism, p<0.05. Along with increased hypermetabolism, significant elevation of cortisol, catecholamines, cytokines, and acute phase proteins indicate that burn patients are in a hyperinflammatory state for up to three years post-burn p<0.05.
Severe burn injury leads to a much more profound and prolonged hypermetabolic and hyperinflammatory response than previously shown. Given the tremendous adverse events associated with the hypermetabolic and hyperinflamamtory responses, we now identified treatment needs for severely burned patients for a much more prolonged time
Mobile critical care recovery program (m-CCRP) for acute respiratory failure survivors: study protocol for a randomized controlled trial
Standard perioperative management in gastrointestinal surgery
The outcome of patients who are scheduled for gastrointestinal surgery is influenced by various factors, the most important being the age and comorbidities of the patient, the complexity of the surgical procedure and the management of postoperative recovery. To improve patient outcome, close cooperation between surgeons and anaesthesiologists (joint risk assessment) is critical. This cooperation has become increasingly important because more and more patients are being referred to surgery at an advanced age and with multiple comorbidities and because surgical procedures and multimodal treatment modalities are becoming more and more complex. The aim of this review is to provide clinicians with practical recommendations for day-to-day decision-making from a joint surgical and anaesthesiological point of view. The discussion centres on gastrointestinal surgery specifically
Factors influencing physical functional status in intensive care unit survivors two years after discharge
BACKGROUND: Studies suggest that in patients admitted to intensive care units (ICU), physical functional status (PFS) improves over time, but does not return to the same level as before ICU admission. The goal of this study was to assess physical functional status two years after discharge from an ICU and to determine factors influencing physical status in this population. METHODS: The study reviewed all patients admitted to two non-trauma ICUs during a one-year period and included patients with age ≥ 18 yrs, ICU stay ≥ 24 h, and who were alive 24 months after ICU discharge. To assess PFS, Karnofsky Performance Status Scale scores and Lawton-Instrumental Activities of Daily Living (IADL) scores at ICU admission (K-ICU and L-ICU) were compared to the scores at the end of 24 months (K-24mo and L-24mo). Data at 24 months were obtained through telephone interviews. RESULTS: A total of 1,216 patients were eligible for the study. Twenty-four months after ICU discharge, 499 (41.6%) were alive, agreed to answer the interview, and had all hospital data available. PFS (K-ICU: 86.6 ± 13.8 vs. K-24mo: 77.1 ± 19.6, p < 0.001) and IADL (L-ICU: 27.0 ± 11.7 vs. L-24mo: 22.5 ± 11.5, p < 0.001) declined in patients with medical and unplanned surgical admissions. Most strikingly, the level of dependency increased in neurological patients (K-ICU: 86 ± 12 vs. K-24mo: 64 ± 21, relative risk [RR] 2.6, 95% CI, 1.8–3.6, p < 0.001) and trauma patients (K-ICU: 99 ± 2 vs. K-24mo: 83 ± 21, RR 2.7, 95% CI, 1.6–4.6, p < 0.001). The largest reduction in the ability to perform ADL occurred in neurological patients (L-ICU: 27 ± 7 vs. L-24mo: 15 ± 12, RR 3.3, 95% CI, 2.3–4.6 p < 0.001), trauma patients (L-ICU: 32 ± 0 vs. L-24mo: 25 ± 11, RR 2.8, 95% CI, 1.5–5.1, p < 0.001), patients aged ≥ 65 years (RR 1.4, 95% CI, 1.07–1.86, p = 0.01) and those who received mechanical ventilation for ≥ 8 days (RR 1.48, 95% CI, 1.02–2.15, p = 0.03). CONCLUSIONS: Twenty-four months after ICU discharge, PFS was significantly poorer in patients with neurological injury, trauma, age ≥ 65 tears, and mechanical ventilation ≥ 8 days. Future studies should focus on the relationship between PFS and health-related quality of life in this population
Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012
OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008.
DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development.
METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations.
RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C).
CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients
Primitive Myxoid Mesenchymal Tumor of Infancy Involving Chest Wall in an Infant: A Case Report and Clinicopathologic Correlation
Cost-effectiveness of a central venous catheter care bundle
Background: A bundled approach to central venous catheter care is currently being promoted as an effective way of preventing catheter-related bloodstream infection (CR-BSI). Consumables used in the bundled approach are relatively inexpensive which may lead to the conclusion that the bundle is cost-effective. However, this fails to consider the nontrivial costs of the monitoring and education activities required to implement the bundle, or that alternative strategies are available to prevent CR-BSI. We evaluated the cost-effectiveness of a bundle to prevent CR-BSI in Australian intensive care patients. ---------- Methods and Findings: A Markov decision model was used to evaluate the cost-effectiveness of the bundle relative to remaining with current practice (a non-bundled approach to catheter care and uncoated catheters), or use of antimicrobial catheters. We assumed the bundle reduced relative risk of CR-BSI to 0.34. Given uncertainty about the cost of the bundle, threshold analyses were used to determine the maximum cost at which the bundle remained cost-effective relative to the other approaches to infection control. Sensitivity analyses explored how this threshold alters under different assumptions about the economic value placed on bed-days and health benefits gained by preventing infection. If clinicians are prepared to use antimicrobial catheters, the bundle is cost-effective if national 18-month implementation costs are below 4.3 million. If decision makers are only interested in obtaining cash-savings for the unit, and place no economic value on either the bed-days or the health benefits gained through preventing infection, these cost thresholds are reduced by two-thirds.---------- Conclusions: A catheter care bundle has the potential to be cost-effective in the Australian intensive care setting. Rather than anticipating cash-savings from this intervention, decision makers must be prepared to invest resources in infection control to see efficiency improvements
- …
