134 research outputs found
Gene transfer: anything goes in plant mitochondria
Parasitic plants and their hosts have proven remarkably adept at exchanging fragments of mitochondrial DNA. Two recent studies provide important mechanistic insights into the pattern, process and consequences of horizontal gene transfer, demonstrating that genes can be transferred in large chunks and that gene conversion between foreign and native genes leads to intragenic mosaicism. A model involving duplicative horizontal gene transfer and differential gene conversion is proposed as a hitherto unrecognized source of genetic diversity
Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative
We provide an overview of the REF-C1SD specified-dynamics experiment that was conducted as part of phase 1 of the Chemistry-Climate Model Initiative (CCMI). The REF-C1SD experiment, which consisted of mainly nudged general circulation models (GCMs) constrained with (re)analysis fields, was designed to examine the influence of the large-scale circulation on past trends in atmospheric composition. The REF-C1SD simulations were produced across various model frameworks and are evaluated in terms of how well they represent different measures of the dynamical and transport circulations. In the troposphere there are large (∼40 %) differences in the climatological mean distributions, seasonal cycle amplitude, and trends of the meridional and vertical winds. In the stratosphere there are similarly large (∼50 %) differences in the magnitude, trends and seasonal cycle amplitude of the transformed Eulerian mean circulation and among various chemical and idealized tracers. At the same time, interannual variations in nearly all quantities are very well represented, compared to the underlying reanalyses. We show that the differences in magnitude, trends and seasonal cycle are not related to the use of different reanalysis products; rather, we show they are associated with how the simulations were implemented, by which we refer both to how the large-scale flow was prescribed and to biases in the underlying free-running models. In most cases these differences are shown to be as large or even larger than the differences exhibited by free-running simulations produced using the exact same models, which are also shown to be more dynamically consistent. Overall, our results suggest that care must be taken when using specified-dynamics simulations to examine the influence of large-scale dynamics on composition
Oligonucleotide Microarray Analysis of Age-Related Gene Expression Profiles in Miniature Pigs
Miniature pigs are useful model animals for humans because they have similar anatomy and digestive physiology to humans and are easy to breed and handle. In this study, whole blood microarray analyses were conducted to evaluate variations of correlation among individuals and ages using specific pathogen-free (SPF) Clawn miniature pigs. Whole blood RNA is easy to handle compared to isolated white blood cell RNA and can be used for health and disease monitoring and animal control. In addition, whole blood is a heterogeneous mixture of subpopulation cells. Once a great change occurs in composition and expressing condition of subpopulations, their associated change will be reflected on whole blood RNA. From 12 to 30 weeks of age, fractions of lymphocytes, monocytes, neutrophils, eosinophils, and basophils in white blood cells showed insignificant differences with age as a result of ANOVA analysis. This study attempted to identify characteristics of age-related gene expression by taking into account the change in the number of expressed genes by age and similarities of gene expression intensity between individuals. As a result, the number of expressed genes was less in fetal stage and infancy period but increased with age, reaching a steady state of gene expression after 20 weeks of age. Variation in gene expression intensity within the same age was great in fetal stage and infancy period, but converged with age. The variation between 20 and 30 weeks of age was comparable to that among 30 weeks individuals. These results indicate that uniformity of laboratory animals is expected for miniature pigs after 20 weeks of age. Furthermore, a possibility was shown that whole blood RNA analysis is applicable to evaluation of physiological state
The evolution of photosynthesis in chromist algae through serial endosymbioses
Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity
Dimensionality of genomic information and performance of the Algorithm for Proven and Young for different livestock species
International audienceAbstractBackgroundA genomic relationship matrix (GRM) can be inverted efficiently with the Algorithm for Proven and Young (APY) through recursion on a small number of core animals. The number of core animals is theoretically linked to effective population size (Ne). In a simulation study, the optimal number of core animals was equal to the number of largest eigenvalues of GRM that explained 98% of its variation. The purpose of this study was to find the optimal number of core animals and estimate Ne for different species.MethodsDatasets included phenotypes, pedigrees, and genotypes for populations of Holstein, Jersey, and Angus cattle, pigs, and broiler chickens. The number of genotyped animals varied from 15,000 for broiler chickens to 77,000 for Holsteins, and the number of single-nucleotide polymorphisms used for genomic prediction varied from 37,000 to 61,000. Eigenvalue decomposition of the GRM for each population determined numbers of largest eigenvalues corresponding to 90, 95, 98, and 99% of variation.ResultsThe number of eigenvalues corresponding to 90% (98%) of variation was 4527 (14,026) for Holstein, 3325 (11,500) for Jersey, 3654 (10,605) for Angus, 1239 (4103) for pig, and 1655 (4171) for broiler chicken. Each trait in each species was analyzed using the APY inverse of the GRM with randomly selected core animals, and their number was equal to the number of largest eigenvalues. Realized accuracies peaked with the number of core animals corresponding to 98% of variation for Holstein and Jersey and closer to 99% for other breed/species. Ne was estimated based on comparisons of eigenvalue decomposition in a simulation study. Assuming a genome length of 30 Morgan, Ne was equal to 149 for Holsteins, 101 for Jerseys, 113 for Angus, 32 for pigs, and 44 for broilers.ConclusionsEigenvalue profiles of GRM for common species are similar to those in simulation studies although they are affected by number of genotyped animals and genotyping quality. For all investigated species, the APY required less than 15,000 core animals. Realized accuracies were equal or greater with the APY inverse than with regular inversion. Eigenvalue analysis of GRM can provide a realistic estimate of Ne
Blood cultures for the diagnosis of multidrug-resistant and extensively drug-resistant tuberculosis among HIV-infected patients from rural South Africa: a cross-sectional study
<p>Abstract</p> <p>Background</p> <p>The yield of mycobacterial blood cultures for multidrug-resistant (MDR) and extensively drug-resistant tuberculosis (XDR-TB) among drug-resistant TB suspects has not been described.</p> <p>Methods</p> <p>We performed a retrospective, cross-sectional analysis to determine the yield of mycobacterial blood cultures for MDR-TB and XDR-TB among patients suspected of drug-resistant TB from rural South Africa. Secondary outcomes included risk factors of <it>Mycobacterium tuberculosis </it>bacteremia and the additive yield of mycobacterial blood cultures compared to sputum culture.</p> <p>Results</p> <p>From 9/1/2006 to 12/31/2008, 130 patients suspected of drug-resistant TB were evaluated with mycobacterial blood culture. Each patient had a single mycobacterial blood culture with 41 (32%) positive for <it>M. tuberculosis</it>, of which 20 (49%) were XDR-TB and 8 (20%) were MDR-TB. One hundred fourteen (88%) patients were known to be HIV-infected. Patients on antiretroviral therapy were significantly less likely to have a positive blood culture for <it>M. tuberculosis </it>(p = 0.002). The diagnosis of MDR or XDR-TB was made by blood culture alone in 12 patients.</p> <p>Conclusions</p> <p>Mycobacterial blood cultures provided an additive yield for diagnosis of drug-resistant TB in patients with HIV from rural South Africa. The use of mycobacterial blood cultures should be considered in all patients suspected of drug-resistant TB in similar settings.</p
‘Nedoceratops’: An Example of a Transitional Morphology
Background: The holotype and only specimen of the chasmosaurine ceratopsid dinosaur ‘Nedoceratops hatcheri ’ has been the source of considerable taxonomic debate since its initial description. At times it has been referred to its own genus while at others it has been considered synonymous with the contemporaneous chasmosaurine Triceratops. Most recently, the debate has focused on whether the specimen represents an intermediate ontogenetic stage between typical young adult Triceratops and the proposed mature morphology, which was previously considered to represent a distinct genus, ‘Torosaurus’. Methodology/Principal Findings: The only specimen of ‘Nedoceratops hatcheri ’ was examined and the proposed diagnostic features of this taxon were compared with other chasmosaurine ceratopsids. Every suggested autapomorphy of ‘Nedoceratops ’ is found in specimens of Triceratops. In this study, Triceratops includes the adult ‘Torosaurus ’ morphology. The small parietal fenestra and elongate squamosals of Nedoceratops are consistent with a transition from a short, solid parietalsquamosal frill to an expanded, fenestrated condition. Objections to this hypothesis regarding the number of epiossifications of the frill and alternations of bone surface texture were explored through a combination of comparative osteology and osteohistology. The synonymy of the three taxa was further supported by these investigations. Conclusions/Significance: The Triceratops, ‘Torosaurus’, and ‘Nedoceratops ’ morphologies represent ontogenetic variatio
Distinct Gene Number-Genome Size Relationships for Eukaryotes and Non-Eukaryotes: Gene Content Estimation for Dinoflagellate Genomes
The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log10-transformed protein-coding gene number (Y′) versus log10-transformed genome size (X′, genome size in kbp) were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y′ = ln(-46.200+22.678X′, whereas non-eukaryotes a linear model, Y′ = 0.045+0.977X′, both with high significance (p<0.001, R2>0.91). Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%–1%) compared to higher and relatively stable percentages in prokaryotes and viruses (97%–47%). The eukaryotic regression models project that the smallest dinoflagellate genome (3×106 kbp) contains 38,188 protein-coding (40,086 total) genes and the largest (245×106 kbp) 87,688 protein-coding (92,013 total) genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species
A review of multi-component maintenance models with economic dependence
In this paper we review the literature on multi-component maintenance models with economic dependence. The emphasis is on papers that appeared after 1991, but there is an overlap with Section 2 of the most recent review paper by Cho and Parlar (1991). We distinguish between stationary models, where a long-term stable situation is assumed, and dynamic models, which can take information into account that becomes available only on the short term. Within the stationary models we choose a classification scheme that is primarily based on the various options of grouping maintenance activities: grouping either corrective or preventive maintenance, or combining preventive-maintenance actions with corrective actions. As such, this classification links up with the possibilities for grouped maintenance activities that exist in practice
- …